Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-27T17:12:03.557Z Has data issue: false hasContentIssue false

Electrical Characterization of Ge Nanocrystals in Oxide Matrix

Published online by Cambridge University Press:  25 May 2011

Ivana Capan
Affiliation:
Ruđer Bošković Institute, 10000 Zagreb, Croatia
Maja Buljan
Affiliation:
Ruđer Bošković Institute, 10000 Zagreb, Croatia
Tea Misic-Radic
Affiliation:
Ruđer Bošković Institute, 10000 Zagreb, Croatia
Branko Pivac
Affiliation:
Ruđer Bošković Institute, 10000 Zagreb, Croatia
Nikola Radic
Affiliation:
Ruđer Bošković Institute, 10000 Zagreb, Croatia
Joerg Grenzer
Affiliation:
Forschungszentrum Dresden-Rossendorf, 01314 Dresden, Germany
Vaclav Holy
Affiliation:
Charles University in Prague, 12116 Prague, Czech Republic
S. Levichev
Affiliation:
University of Minho, 4710-057 Braga, Portugal
Sigrid Bernstorff
Affiliation:
Sincrotrone Trieste, 34012 Basovizza, Italy
Get access

Abstract

We report on electrical properties in [(Ge+SiO2)/SiO2]×2 films deposited by magnetron sputtering on a periodically corrugated-rippled substrate and annealed in vacuum and forming gas. The rippled substrate caused a self-ordered growth of Ge quantum dots, while annealing in different environments enabled us to separate charge trapping in quantum dots from the trapping at the dot-matrix and matrix-substrate interfaces. We show that the charge trapping occurs mainly in Ge quantum dots in the films annealed in the forming gas, while Si–SiO2 interface trapping is dominant for the vacuum annealed films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Duguay, S., Grob, J. J., Slaoui, A., Le Gall, Y., and Amann-Liess, M., J. Appl. Phys. 97, 104330 (2005).Google Scholar
2. Lee, P. F., Lu, X. B., Dai, J. Y., Chan, H. L. W., Jelenkovic, E., and Tong, K. Y., Nanotechnology 17, 1202 (2006).Google Scholar
3. Wan, Q., Lin, C. L., Liu, W. L., and Wang, T. H., Appl. Phys. Lett. 82, 4708 (2003).Google Scholar
4. Lu, X. B., Lee, P. F., and Dai, J., Appl. Phys. Lett. 86, 203111 (2005).Google Scholar
5. Yang, M., Chen, T. P., Liu, Z., Wong, J. I., Zhang, W. L., Zhang, S., and Liu, Y., J. Appl. Phys. 106, 103701 (2009).Google Scholar
6. Nassiopoulou, A. G., Ioannou-Sougleridis, V., and Travlos, A., Frontiers of Multifunctional Integrated Nanosystems, NATO Science Series Vol. 152 Springer, (2005), pp.277–286.Google Scholar
7. Buljan, M., Grenzer, J., Holý, V., Radić, N., Mišić-Radić, T., Levichev, S., Bernstorff, S., Pivac, B., and Capan, I., Appl. Phys. Lett. 97, 163117 (2010).Google Scholar
8. Dobaczewski, L., Peaker, A. R., and Bonde Nielsen, K., J. Appl. Phys. 96, 4689 (2004).Google Scholar
9. Lin, S. W., Balocco, C., Missous, M., Peaker, A. R., and Song, A. M., Phys. Rev. B 72, 165302 (2005).Google Scholar
10. Antonova, I. V., Volodin, V. A., Neustroev, E. P., Smagulova, S. A., Jedrzejewsi, J., and Balberg, I., J. Appl. Phys. 106, 064306 (2009).Google Scholar
11. Dobaczewski, L., Bernardini, S., Kruszewski, P., Hurley, P. K., Markevich, V. P., Hawkins, I. D., and Peaker, A. R., Appl. Phys. Lett. 92, 242104 (2008).Google Scholar