Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-30T00:27:07.497Z Has data issue: false hasContentIssue false

Electrical Characterization of Phosphorus Doped Ion Beam Synthesised CoSi2/Si Schottky Barrier Diodes.

Published online by Cambridge University Press:  25 February 2011

R. S. Spraggs
Affiliation:
Dept. Electronic and Electrical Engineering, University Of Surrey, Guildford, Surrey, GU2 5XH United Kingdom.
G. Pananakakis
Affiliation:
Laboratoire de Physique des Composants à semiconducteurs, Ecole Nationale Superieure d'Electronique et de Radioélectricité de Grenoble, BP 257, 38016 Grenoble Cedex (France).
D. Bauza
Affiliation:
Laboratoire de Physique des Composants à semiconducteurs, Ecole Nationale Superieure d'Electronique et de Radioélectricité de Grenoble, BP 257, 38016 Grenoble Cedex (France).
K. J. Reeson
Affiliation:
Dept. Electronic and Electrical Engineering, University Of Surrey, Guildford, Surrey, GU2 5XH United Kingdom.
R. M. Gwilliam
Affiliation:
Dept. Electronic and Electrical Engineering, University Of Surrey, Guildford, Surrey, GU2 5XH United Kingdom.
T. D. Hunt
Affiliation:
Dept. Electronic and Electrical Engineering, University Of Surrey, Guildford, Surrey, GU2 5XH United Kingdom.
B. J. Sealy
Affiliation:
Dept. Electronic and Electrical Engineering, University Of Surrey, Guildford, Surrey, GU2 5XH United Kingdom.
Get access

Abstract

The current/voltage characteristics of ion beam synthesised CoSi2/Si (n - type) Schottky barrier diodes implanted with phosphorus to doses between 5 × 1012 and 2 × 1013 ions cm-2are examined after annealing at temperatures in the range 400° - 1000°C. For each dose of implanted phosphorus, the effective barrier height of the CoSi2/Si interface is successively reduced as the anneal temperature increases. The results of Secondary Ion Mass Spectroscopy (SIMS) analysis indicate that these changes are due to an increase in the space charge density at the interface. For lower annealing temperatures the increase in space charge density is attributed to activation of the phosphorus in the tail of the dopant distribution which extends across the CoSi2/Si interface. For higher annealing temperatures larger increases in the space charge density are attributed to a modified dopant distribution resulting from phosphorus diffusion and activation at the interface. For doses of 1 × 1014 P* cm-2and 2×1015P*cm2, ohrnie characteristics are seen after annealing at temperatures of 1000°C and 500°C respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 White, A. E., Short, K. T., Dynes, R. C., Garno, J. P., and Gibson, J. M., Appl. Phys. Lett., 50, 95, 1987.Google Scholar
2 Van Ommen, A. H., Ottenheim, J. J. M., Theunissen, A. M. L., and Mouwen, A. G., Appl. Phys. Lett, 53, 669, 1988.Google Scholar
3 Reeson, K. J., Spraggs, R. S., Gwilliam, R. M., Webb, R. P., Sealy, B. J., and De Veirman, A., Vacuum., 42, 1163, 1991.Google Scholar
4 Barbour, J. C., Picraux, S. and Doyle, B. L., Mat. Res. Soc. Proc, 107, 269, 1988.Google Scholar
5 Kohlhof, K., Manu, S., Stritzker, B. and Jager, W., Nucl Instrum & Methods., B39, 431, 1989.Google Scholar
6 Andrews, J. M., J. Vac. Sci. & Technol., 11, 972, 1974.CrossRefGoogle Scholar
7 Levi, A. F. J., Tung, R. T., Batstone, J. L., and Anzolwar, M., Mat. Res. Soc. Proc., 107, 259, 1988.Google Scholar
8 Hensel, J. C., Levi, A. F. J., Tung, R. T. and Gibson, J. M., Appl. Phys. Lett, 47, 151, 1985.Google Scholar
9 White, A. E., Short, K. T., Dynes, R. C., Hull, R., and Vandenberg, J. M., Nucl Instrum & Methods., B39, 253, 1989.Google Scholar
10 Spraggs, R. S., Pananakakis, G., Bauza, D., Reeson, K. J. and Sealy, B. J., IEE Electron Utt., 28, 296, 1992.CrossRefGoogle Scholar
11 Spraggs, R. S., Pananakakis, G., Bauza, D., Reeson, K. J. and Sealy, B. J., IEE Electron Utt., 28, 515, 1992.Google Scholar
12 Schuppen, A., Mantl, S., Vescan, L., Woiwood, S., Sjoreen, T. P., and Lüth, H., Mat. Sci and Engin., B, 1992.Google Scholar
13 Sze, S. M., “Physics of Semiconductor Devices” (2nd ed. New York Wiley, 1981)Google Scholar
14 Padovani, F. A., and Stratton, R., Solid-State Electron., 9, 695, 1966.CrossRefGoogle Scholar
15 Crowell, C. R., and Rideout, V. L., Solid-State Electron., 12, 89, 1969.CrossRefGoogle Scholar
16 Shannon, J. M., Solid-State Electron., 19, 537, 1976.Google Scholar