Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-67wsf Total loading time: 0.215 Render date: 2022-05-25T16:01:44.326Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Electrical Injection and Transport in Films of Semiconductor Nanocrystals

Published online by Cambridge University Press:  10 February 2011

D.S. Ginger
Affiliation:
Cavendish Laboratory, Madingley Road, Cambridge, CB3 OHE, U.K.
N.C. Greenham
Affiliation:
Cavendish Laboratory, Madingley Road, Cambridge, CB3 OHE, U.K.
Get access

Abstract

We study injection and transport in thin disordered films of CdSe nanocrystals between metal electrodes, We investigate the current-voltage characteristics of these devices as a function of electrode material, nanocrystal size, and temperature. We also measure the photocurrent response of these devices, and find that the photocurrent action spectra follow the quantum-confined absorption spectra of the nanocrystals. For dissimilar top and bottom electrodes, we find that the devices are highly rectifying. By studying space charge limited currents in these devices, we are able to place a lower bound on the effective carrier mobility in such films, and we find that the effective mobility is strongly field dependent. We find that the conductivity is strongly temperature dependent, and is qualitatively consistent with an activated hopping process at temperatures above 180 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Greenham, N. C., Peng, X., and Alivisatos, A. P., Phys. Rev. B 54, 17628 (1996).10.1103/PhysRevB.54.17628CrossRefGoogle Scholar
2. Colvin, V. L., Schlamp, M. C., and Alivisatos, A. P., Nature 370, 354 (1994).10.1038/370354a0CrossRefGoogle Scholar
3. Dabbousi, B. O., Bawendi, M. G., Onitsuka, O., and Rubner, M. F., Appl. Phys. Lett. 66, 1316 (1995).10.1063/1.113227CrossRefGoogle Scholar
4. Schlamp, M. C., Peng, X., and Alivisatos, A. P., J. Appl. Phys. 82, 5837 (1997).10.1063/1.366452CrossRefGoogle Scholar
5. Mattoussi, H., Radzilowski, L. H., Dabbousi, B. O., Thomas, E. L., Bawendi, M. G., and Rubner, M. F., J. Appl. Phys. 83, 7965 (1998).10.1063/1.367978CrossRefGoogle Scholar
6. Collier, C. P., Vossmeyer, T., and Heath, J. R., Annu. Rev. Phys. Chem. 49, 371 (1998).10.1146/annurev.physchem.49.1.371CrossRefGoogle Scholar
7. Yoffe, A. D., Adv. in Phys. 42, 173 (1993).10.1080/00018739300101484CrossRefGoogle Scholar
8. Alivisatos, A. P., Science 271, 933 (1996).10.1126/science.271.5251.933CrossRefGoogle Scholar
9. Klein, D. L., McEuen, P. L., Katari, J. E. Bowen, Roth, R., and Alivisatos, A. P., Appl. Phys. Lett. 68, 2574 (1996).10.1063/1.116188CrossRefGoogle Scholar
10. Klein, D. L., Roth, R., A. Lim, K. L., Alivisatos, A. P., and Mceuen, P. L., Nature 389, 699 (1997).10.1038/39535CrossRefGoogle Scholar
11. Janes, D. B., Kolagunta, V. R., Osifchin, R. G., Bielefeld, J. D., Andres, R. P., Henderson, J. I., and Kubiak, C. P., Superlattices and Microstructures 18, 275 (1995).10.1006/spmi.1995.1112CrossRefGoogle Scholar
12. Andres, R. P., Bielefeld, J. D., Henderson, J. I., Janes, D. B., Kolagunta, V. R., Kubiak, C. P., Mahoney, W. J., and Osifchin, R. G., Science 273, 1690 (1996).10.1126/science.273.5282.1690CrossRefGoogle Scholar
13. Brust, M., Bethell, D., Schiffrin, D. J., and Kiely, C. J., Adv. Mater. 7, 795 (1995).10.1002/adma.19950070907CrossRefGoogle Scholar
14. Artemyev, M. V., Sperling, V., and Woggon, U., J. Appl. Phys. 81, 6975 (1997).10.1063/1.365261CrossRefGoogle Scholar
15. Brust, M., Bethell, D., Kiely, C. J., and Schiffrin, D. J., Langmuir 14, 5425 (1998).10.1021/la980557gCrossRefGoogle Scholar
16. Leatherdale, C. A., Kagan, C. R., Kastner, M. A., and Bawendi, M. G., Abstr. of ACS 213, 319-PHYS (1997).Google Scholar
17. Murray, C. B., Norris, D. J., and Bawendi, M. G., J. Amer. Chem. Soc. 15, 8706 (1993).10.1021/ja00072a025CrossRefGoogle Scholar
18. Katari, J. E. Bowen, Colvin, V. L., and Alivisatos, A. P., J. Phys. Chem. 98,4109 (1994).10.1021/j100066a034CrossRefGoogle Scholar
19. Kim, J. S., Granstrom, M., Friend, R. H., Johansson, N., Salaneck, W. R., Daik, R., Feast, W. J., and Cacialli, F., J. Appl. Phys. 84, 6859 (1998).10.1063/1.368981CrossRefGoogle Scholar
20. Sze, S. M., Physics of Semiconductor Devices, 2nd Edition ed. (John Wiley & Sons, New York, 1981).Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Electrical Injection and Transport in Films of Semiconductor Nanocrystals
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Electrical Injection and Transport in Films of Semiconductor Nanocrystals
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Electrical Injection and Transport in Films of Semiconductor Nanocrystals
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *