Hostname: page-component-cb9f654ff-k7rjm Total loading time: 0 Render date: 2025-08-03T03:35:55.193Z Has data issue: false hasContentIssue false

Electroless Synthesis of 1.4 nm Pd and Pt Nanoparticles onSelf-Assembled Rosette Nanotubes

Published online by Cambridge University Press:  28 January 2011

Rahul Chhabra
Affiliation:
National Institute for Nanotechnology, Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2M9 Canada
Hicham Fenniri
Affiliation:
National Institute for Nanotechnology, Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2M9 Canada
Get access

Abstract

Electroless synthesis and hierarchical organization of 1.4 nm Pd and Ptnanoparticles (NPs) on self-assembled Rosette Nanotubes (RNTs) is described.The nucleated NPs are nearly monodisperse and reveal supramolecularorganizations guided by RNT templates. Interestingly, the narrow sizedistribution is attributable to unique templating behavior of RNTs. Theresulting metal NP-RNT composites were characterized by Atomic ForceMicroscopy (AFM), Scanning Electron Microscopy (SEM) and TransmissionElectron Microscopy (TEM). X-ray Photoelectron Spectroscopy (XPS) was alsoperformed to confirm the nature and composition of RNT-templated NPs.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

1. Daniel, M.-C. and Astruc, D., Chem. Rev. 104 (1), 293 (2004).Google Scholar
2. Burda, C., Chen, X., Narayanan, R. and El-Sayed, M. A., Chem. Rev. 105 (4), 1025 (2005).Google Scholar
3. Pileni, M. P., J. Phys. Chem. C 111 (26), 9019 (2007).Google Scholar
4. Suzuki, K., Sato, S. and Fujita, M., Nature Chem. 2, 25 (2010).Google Scholar
5. Sharma, J., Chhabra, R., Cheng, A., Brownell, J., Liu, Y. and Yan, H., Science 323, 112 (2009).Google Scholar
6. Dickerson, M. B., Sandhage, K. H. and Naik, R. R., Chem. Rev. 108 (11), 4935 (2008).Google Scholar
7. Kumara, M. T., Tripp, B. C. and Muralidharan, S., Chem. Mater. 19 (8), 2056 (2007).Google Scholar
8. Douglas, T., Strable, E., Willits, D., Aitouchen, A., Libera, M. and Young, M., Adv. Mater. 14 (6), 415 (2002).Google Scholar
9. Chen, C.-L. and Rosi, N. L., J. Am. Chem. Soc. 132 (20), 6902 (2010).Google Scholar
10. Fenniri, H., Mathivanan, P., Vidale, K. L., Sherman, D. M., Hallenga, K., Wood, K. V. and Stowell, J. G., J. Am. Chem. Soc. 123 (16), 3854 (2001).Google Scholar
11. Moralez, J. G., Raez, J., Yamazaki, T., Motkuri, R. K., Kovalenko, A. and Fenniri, H., J. Am. Chem. Soc. 127 (23), 8307 (2005).Google Scholar
12. Humphrey, W., Dalke, A. and Schulten, K., J. Mol. Graph. 14, 33 (1996).Google Scholar
13. Chhabra, R., Moralez, J. G., Raez, J., Yamazaki, T., Cho, J.-Y., Myles, A. J., Kovalenko, A. and Fenniri, H., J. Am. Chem. Soc. 132 (1), 32 (2010).Google Scholar
14. Hegde, M. S., Madras, G. and Patil, K. C., Acc. Chem. Res. 42 (6), 704 (2009).Google Scholar
15. Dressick, W. J., Kondracki, L. M., Chen, M.-S., Brandow, S. L., Matijević, E. and Calvert, J. M., Colloids and Surfaces A 108 (1), 101 (1996).Google Scholar