Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-hl5gf Total loading time: 0.316 Render date: 2023-01-29T09:41:19.949Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Electronic structure of Cd, In, Sn substitutional Defects in GaSe

Published online by Cambridge University Press:  01 February 2011

Zsolt Rak
Affiliation:
rak@pa.msu.edu, Michigan State University, Physics and Astronomy, East Lansing, MI, 48824, United States
Subhendra D Mahanti
Affiliation:
mahanti@pa.msu.edu, Michigan State University, Physics and Astronomy, East Lansing, MI, 48824, United States
Krishna C Mandal
Affiliation:
kmandal@eiclabs.com, EIC Laboratories, Inc, 111 Downey Street, Norwood, MA, 02062, United States
Nils C Fernelius
Affiliation:
nils.fernelius@wpafb.af.mil, Wright-Patterson Air Force Base, AFRL/MLPSO, Dayton, OH, 45433, United States
Get access

Abstract

Ab initio electronic structure calculations within density functional theory have been carried out in pure GaSe and GaSe doped with substitutional impurities (Cd, In and Sn) at the Ga site in order to understand the nature of the defect states and how they depend on the nominal valence of these three impurities. We find that Cd impurity introduces a defect state located between 0.1 – 0.18 eV above the valence band, in good agreement with photoluminescence peaks seen at 0.13 eV and 0.18 eV. Using both experimental and theoretical effective mass parameters we show that effective mass model fails to describe these acceptor states. Sn changes the single particle density of states (DOS) near the bottom of the conduction band, and gives rise to resonant states deep in the valence band. In, on the other hand, behaves like Ga, it does not make noticeable change in the DOS of the host GaSe crystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dimitriev, V. G., Gurzadyhan, G. G., and Nikogosyan, D. N., Handbook of Nonlinear Optical Crystals(Springer, New York, 1999), p.166.CrossRefGoogle Scholar
2. Liu, K., Xu, J., and Zhang, X.-C., Appl. Phys. Lett. 85 (6), 863 (2004)CrossRefGoogle Scholar
3. Liu, K., Xu, J., and Zhang, X.-C., Joint 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electronics, pp. 333334 (2004)Google Scholar
4. Shi, W. et al, Appl. Phys. Lett. 80 (21) 38893891 (2002); Optics Lett. 27 (16) 1454-6 (2002); Appl. Phys. Lett. 84 (10) 1635-7 (2003)CrossRefGoogle Scholar
5. Yu, B. L., Zeng, F., Kartazayev, V., Alfano, R. R. and Mandal, Krishna C., Appl. Phys. Lett. 87 182104 (2005)CrossRefGoogle Scholar
6. Manfredotti, C., Murri, R. and Vasanelli, L., Nucl. Instr. and Meth. 115 (2), 349 (1974)CrossRefGoogle Scholar
7. Manfredotti, C., Murri, R., Quirini, A. and Vasanelli, L., Nucl. Instr. and Meth. 131(3), 457 (1975)CrossRefGoogle Scholar
8. Mancini, A. M., Manfredotti, C., Murri, R., Rizzo, A., Quirini, A. and Vasanelli, L., IEEE Trans. Nucl. Sci. 23 (1), 189 (1976)CrossRefGoogle Scholar
9. Sakai, E., Nakatani, H., Tatsuyama, C. and Takeda, F., IEEE Trans. Nucl. Sci. 35(1), 85 (1988)CrossRefGoogle Scholar
10. Nakatani, H., Sakai, E., Tatsuyama, C. and Takeda, F., Nucl. Instr. and Meth. A 283(2), 303 (1989)CrossRefGoogle Scholar
11. Yamazaki, T., Nakatani, H. and Ikeda, N., Jpn. J.Appl. Phys. 32 (4), 1857 (1993)CrossRefGoogle Scholar
12. Yamazaki, T., Terayama, K., Shimazaki, T. and Nakatani, H., Jpn. J. Appl. Phys. 36(1A), 378 (1997)CrossRefGoogle Scholar
13. Fivaz, R. and Mooser, R., Phys. Rev. 163 (3), 743 (1967)CrossRefGoogle Scholar
14. Fan, Y., Bauer, M., Kador, L., Allakhverdiev, K. R. and Salaev, E. Yu., J. Appl. Phys. 91, 1081 (2002)CrossRefGoogle Scholar
15. Shigetomi, S., Ikari, T. and Nishimura, H., J. Appl. Phys. 69(11), 7936 (1991)CrossRefGoogle Scholar
16. Micocci, G., Serra, A., and Tepore, A., J. Appl. Phys. 82 (5), 2365 (1997)CrossRefGoogle Scholar
17. Shigetomi, S., Ikari, T., and Nakashima, H., Phys. Stat. Sol. A 160 (1), 159 (1997); S. Shigetomi, T. Ikari, and H. Nakashima, Jpn. J. Appl. Phys 35 (8), 4291 (1996)3.0.CO;2-M>CrossRefGoogle Scholar
18. Capozzi, V. and Minafra, A., J. Phys. C. 14 (29), 4335 (1981)CrossRefGoogle Scholar
19. Shigetomi, S. and Ikari, T., J. Appl. Phys. 95 (11), 6480 (2004)CrossRefGoogle Scholar
20. Sanchez-Royo, J. F., Errandonea, D., Segura, A., Roa, L., and Chevy, A., J. Appl. Phys. 83, 4750 (1998) and references thereinCrossRefGoogle Scholar
21. Shure, D. H., Singh, N. B., Balakrishna, V., Fernelius, N. C. and Hopkins, F. K., Optics Lett. 22(11), 775–7 (1997); V. G. Voevodin, O. V. Voevodina, S. A. Bereznaya, Z. V. Korotchenko, A. N. Morozov, S. Yu. Sarkisov, N. C. Fernelius and J. T. Goldstein, Optical Materials 26(9), 495-9 (2004)CrossRefGoogle Scholar
22. Pantelides, S. T., Rev. Mod. Phys. 50, 797 (1978)CrossRefGoogle Scholar
23. Ahmad, S., Hoang, K., and Mahanti, S. D., Phys. Rev. Lett. 96, 056403 (2006)CrossRefGoogle Scholar
24. Ahmad, S., Hoang, K., Mahanti, S. D., and Kanatzidis, M. G., Phys. Rev. B (accepted)Google Scholar
25. D, M. O.. Camara, A. Mauger and Devos, I., Phys. Rev. B 65, 125206 (2002)Google Scholar
26. Boer, Karl W., Survey of Semiconductor Physics, 2nd Edition, Vol. I: Electrons and Other Particles in Semiconductors, p. 765 Google Scholar
27. Faulkner, R. A., Phys. Rev. 184, 713 (1969)CrossRefGoogle Scholar
28. Madelung, O., Semiconductors: Data Handbook, 3rd edition, Springer, p. 523526 Google Scholar
29. Singh, D. J., Planewaves, Pseudopotentials, and the LAPW method (Boston: Kluwer Academic) (1994)CrossRefGoogle Scholar
30. Blaha, P. et al., WIEN2K, An Augmented Plane Wave +Local Orbitals Program for Calculating Crystal Properties, K. Schwarz, Techn. Universitat Wien, Austria (2001)Google Scholar
31. P., Perdew J., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Electronic structure of Cd, In, Sn substitutional Defects in GaSe
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Electronic structure of Cd, In, Sn substitutional Defects in GaSe
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Electronic structure of Cd, In, Sn substitutional Defects in GaSe
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *