Hostname: page-component-59f8fd8595-p59nl Total loading time: 0 Render date: 2023-03-23T01:46:06.581Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Electrophoretic Deposition of CdSe Nanocrystals for Photovoltaic Applications

Published online by Cambridge University Press:  01 February 2011

Nathanael Smith
Affiliation:
nathanael.smith@vanderbilt.edu, Vanderbilt University, Chemistry, 2201 West End Avenue, Nashville, TN, 37235, United States
Kevin J Emmett
Affiliation:
k.emmett@Vanderbilt.Edu, Vanderbilt University, Department of Physics and Astronomy, Nashville, TN, 37240, United States
Sandra J Rosenthal
Affiliation:
sjr@femto.cas.vanderbilt.edu, Vanderbilt University, Department of Chemistry, Nashville, TN, 37240, United States
Get access

Abstract

CdSe nanocrystals chemically linked to nanocrystalline titanium dioxide substrates form a promising material for nanostructured photovoltaic devices. The usual method for attaching the nanocrystals to the titanium dioxide substrate is by means of a linking molecule (such as mercaptopropionic acid) or in-situ growth. In this paper, we report the use of an alternative technique, electrophoretic deposition (EPD), to directly deposit already formed CdSe nanocrystals onto the substrate. In EPD, a voltage is established between two electrodes that are immersed in a solution of nanocrystals. At room temperature, a fraction of the nanocrystals are thermally charged, and these charged nanocrystals migrate to the electrodes and adhere to the surface. A significant advantage of EPD over the use of linking molecules is the speed with which the nanocrystals are deposited: EPD takes only a few minutes, compared to the several hours required for the alternative techniques. Additionally, we have fabricated initial photovoltaic devices based on electrophoretically deposited CdSe nanocrystals on a planar TiO2 thin film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Brus, L. E., J. Chem. Phys. 80, 44034409 (1984)10.1063/1.447218CrossRefGoogle Scholar
(2) Nozik, A. J., Physica E, 14, 115120 (2002)10.1016/S1386-9477(02)00374-0CrossRefGoogle Scholar
(3) Ellingson, R. J., Beard, Matthew C., Johnson, J. C., Yu, P., Micic, Olga I., Nozik, A. J., Shabaev, A. and Efros, A. L., Nano Lett. 5, 865871 (2005)10.1021/nl0502672CrossRefGoogle Scholar
(4) Schaller, R. D., Sykora, M., Pietryga, J. M. and Klimov, V. I., Nano Lett. 6, 424429 (2006)10.1021/nl052276gCrossRefGoogle Scholar
(5) Robel, I., Subramanian, V., Kuno, M., and Kamat, P., J. Am. Chem. Soc. 128, 23852393 (2006)CrossRefGoogle Scholar
(6) Qian, X., Qin, D., Bai, Y., Li, T., Tang, X., Wang, E. and Dong, S., J. Solid State Electrochem 5, 562567 (2001)10.1007/s100080000179CrossRefGoogle Scholar
(7) Vogel, R., P. Hoyer and Weller, H., J. Phys. Chemm. 98, 31833188 (1994)10.1021/j100063a022CrossRefGoogle Scholar
(8) Peter, L. M., Riley, D. J., Tull, E. J. and Wijayantha, K. G. Upul, Chem. Commin. 1030 (2002)Google Scholar
(9) Shen, Q., D. Arae and Toyoda, T., J. Photochem. Photobiol. Chem. A 164, 7580, (2004)CrossRefGoogle Scholar
(10) Beist, O. O. Van der and Vandeperre, L. J., Annu.Rev. Mater. Sci., 29, 327352 (1999)Google Scholar
(11) Boccaccini, A. R., Karapappas, P., Marijuan, J. M. and Kaya, C., J. Mater. Sci. 39, 851859 (2004)10.1023/B:JMSC.0000012914.47793.3eCrossRefGoogle Scholar
(12) Kim, G., Seo, H., Godble, V. P., Kim, Y., Yang, O. and Shin, H., Electrochem. Commun. 8, 961966 (2006)10.1016/j.elecom.2006.03.037CrossRefGoogle Scholar
(13) Mahajan, S. V., Kavich, D. W., Redigilo, M. L. and Dickerson, J. H., J. Mater. Sci. 41, 81608165 (2006)10.1007/s10853-006-0420-1CrossRefGoogle Scholar
(14) Islam, M. A. and Herman, I. P., Appl. Phys. Lett. 80, 38233825 (2002)CrossRefGoogle Scholar
(15) Islam, M. A., Xia, Y., Steigerwald, M. L., Yin, M., Liu, Z., O'Brien, S., Levicky, R., and Herman, I. P., Nano Lett. 3, 16031606 (2003)10.1021/nl034634qCrossRefGoogle Scholar
(16) Islam, M. A., Xia, Y., Telesca, D. A. Jr, Steigerwald, M. L. and Herman, I. P., Chem. Mater. 16, 4954 (2004)10.1021/cm0304243CrossRefGoogle Scholar
(17) Zhang, Q., Xu, T., Butterfield, D., Misner, M. J., Ryu, D. Y., Emrick, T. and Russell, T. P., Nano Lett. 5, 357361 (2005)10.1021/nl048103tCrossRefGoogle Scholar
(18) Rosenthal, S. J., McBride, J., Pennycook, S. J. and Feldman, L. C., Surf. Sci. Rep. 62, 111157 (2007)10.1016/j.surfrep.2007.02.001CrossRefGoogle Scholar
(19) Goh, C., Coakley, K. M., and McGehee, M. D., Nano Lett. 5, 15451549 (2005)10.1021/nl050704cCrossRefGoogle Scholar