Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-30T05:09:51.244Z Has data issue: false hasContentIssue false

First-Principles Study of Helical Silver Single-Wall Nanotubes and Nanowires

Published online by Cambridge University Press:  01 February 2011

Shelly L. Elizondo
Affiliation:
shelly.elizondo@okstate.edu, Oklahoma State University, Department of Physics, United States
John W. Mintmire
Affiliation:
john.mintmire@okstate.edu, Oklahoma State University, Physics, Dept Physics, PS 145, OSU, Stillwater, OK, 74078, United States, 405-744-5663, 405-744-1797
Get access

Abstract

We investigate the electronic structures of extended helical silver single-wall nanotubes (AgSWNTs). Because these helical nanotubes are essentially comprised of n-atom strands winding about the nanotube's axis, we systematically examine, strand by strand, the electronic properties and the number of conduction channels associated with these structures. Herein, we study a special case of high-symmetry nanotubes. Nanotubes with sufficiently large radii were also calculated with a silver atomic chain inserted along the nanotube's axis. The analysis is carried out within a first-principles, all-electron self-consistent local density functional approach (LDF) adapted for helical symmetry. Modeling helical silver (or gold) single-wall nanotubes entails rolling up a sheet of atoms and mapping the atoms onto the surface of a cylinder, comparable to rolling up a graphite sheet for a carbon nanotube. It is well known that controlling the size and shape of silver and gold nanostructures results in the ability to tailor the optical and catalytic properties of these materials. In this preliminary study, we consider changes in the electronic structures of these materials as each nanotube is built strand by strand.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kondo, Y. and Takayanagi, K., Science 289, 606 (2000).Google Scholar
2 Oshima, Y., Onga, A., and Takayanagi, K., Phys. Rev. Lett. 91, 205503 (2003).Google Scholar
3 Smit, R. H. M., Untiedt, C., Yanson, A. I., and Ruitenbeek, J. M. van, Phys. Rev. Lett. 87, 266102 (2001).Google Scholar
4 Hong, B. H., Bae, S. C., Lee, C., Jeong, S., and Kim, K. S., Science 294, 348 (2001).Google Scholar
5 Rodrigues, V., Bettini, J., Rocha, A. R., Rego, L. G. C., and Ugarte, D., Phys. Rev. B 65, 153402 (2002).Google Scholar
6 Hasegawa, A., Yoshizawa, K., and Hirao, K., Chem. Phys. Lett. 345, 367 (2001).Google Scholar
7 Senger, R. T., Dag, S., and Ciraci, S., Phys. Rev. Lett. 93, 196807 (2004).Google Scholar
8 Yang, C.-K., Appl. Phys. Lett. 85, 2923 (2004).Google Scholar
9 Ono, T. and Hirose, K., Phys. Rev. Lett. 94, 206806 (2005).Google Scholar
10 Mintmire, J. W., In: Labanowski, J. K., Ed. Density Functional Methods in Chemistry; Springer-Verlag: Berlin, 1990; pp 125138.Google Scholar
11 Elizondo, S. L. and Mintmire, J. W., Int. J. Quantum Chem. 105, 772 (2005).Google Scholar
12 Tosatti, E., Prestipino, S., Kostlmeier, S., Corso, A. Dal, and Tolla, F.D. Di, Science 291, 288 (2001).Google Scholar
13 Elizondo, S. L. and Mintmire, J. W., Phys. Rev. B 73, 045431 (2006).Google Scholar
14 Ohnishi, H., Kondo, Y., and Takayanagi, K., Nature (London) 395, 780 (1998).Google Scholar
15 Zhao, J., Buia, C., Han, J., and Lu, J. P., Nanotechnology 14, 501 (2003).Google Scholar
16 Agrawal, B. K., Agrawal, S., and Singh, S., J. Nanosci. Nanotech. 5, 635 (2005).Google Scholar
17 Wees, B. J. van, et al., Phys. Rev. Lett. 60, 848 (1988).Google Scholar
18 Tekman, E. and Ciraci, S., Phys. Rev. B 43, 7145 (1991).Google Scholar