Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-09T17:30:04.819Z Has data issue: false hasContentIssue false

Fracture Patterns of Boron Nitride Nanotubes

Published online by Cambridge University Press:  10 April 2013

Eric Perim
Affiliation:
Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil.
Ricardo Paupitz Santos
Affiliation:
Departamento de Física, IGCE, Universidade Estadual Paulista, UNESP, 13506-900, Rio Claro, SP, Brazil.
Pedro Alves da Silva Autreto
Affiliation:
Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil.
Douglas S. Galvao
Affiliation:
Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil.
Get access

Abstract

During the last years carbon-based nanostructures (such as, fullerenes, carbon nanotubes and graphene) have been object of intense investigations. The great interest in these nanostructures can be attributed to their remarkable electrical and mechanical properties. Their inorganic equivalent structures do exist and are based on boron nitride (BN) motifs. BN fullerenes, nanotubes and single layers have been already synthesized. Recently, the fracture patterns of single layer graphene and multi-walled carbon nanotubes under stress have been studied by theoretical and experimental methods. In this work we investigated the fracturing process of defective carbon and boron nitride nanotubes under similar stress conditions. We have carried out fully atomistic molecular reactive molecular dynamics simulations using the ReaxFF force field. The similarities and differences between carbon and boron nitride fracture patterns are addressed.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K., Geim, A., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I., and Firsov, A., Science 306, 666 (2004).10.1126/science.1102896CrossRefGoogle Scholar
Nakada, K., Fujita, M., Dresselhaus, G. and Dresselhaus, M. S., Phys. Rev. B, 54, 17954 (1996).CrossRefGoogle Scholar
Barone, V., and Peralta, J., Nano letters 8, 2210 (2008).CrossRefGoogle Scholar
Li, X., Wang, X., Zhang, L., Lee, S. and Dai, H., Science, 319, 1229 (2008).CrossRefGoogle Scholar
Han, M. Y., Ozyilmaz, B., Zhang, Y. and Kim, P., Phys. Rev. Lett., 98, 206805 (2007).CrossRefGoogle Scholar
Campos-Delgado, J., Romo-Herrera, J. M., Jia, X., Cullen, D. A., Muramatsu, H., Kim, Y. A., Hayashi, T., Ren, Z., Smith, D. J. and Y., Nano Lett., 8, 2773 (2008).CrossRefGoogle Scholar
Jiao, L., Zhang, L., Wang, X., Diankov, G. and Dai, H., Nature, 458, 877 (2009).CrossRefGoogle Scholar
Kosynkin, D. V., Higginbotham, A. L., Sinitskii, A., Lomeda, J. R., Dimiev, A., Price, B. K. and Tour, J. M., Nature, 458, 872 (2009).CrossRefGoogle Scholar
Erickson, K., Gibb, A., Sinitskii, A., Rousseas, M., Alem, N., Tour, J., and Zettl, A., Nano letters 11, 3221 (2011).10.1021/nl2014857CrossRefGoogle Scholar
Zeng, H., Zhi, C., Zhang, Z., Wei, X., Wang, X., Guo, W., Bando, Y., and Golberg, D., Nano letters 10, 5049 (2010).CrossRefGoogle Scholar
dos Santos, R. P. B., Perim, E., Autreto, P., Brunetto, G., and Galvao, D., Nanotechnology 23, 465702 (2012).CrossRefGoogle Scholar
Van Duin, A., Dasgupta, S., Lorant, F., and Goddard, W. III, The Journal of Physical Chemistry A 105, 9396 (2001).CrossRefGoogle Scholar
Plimpton, S., et al. ., Journal of Computational Physics 117, 1 (1995).CrossRefGoogle Scholar
Zang, A. and Stephansson, O., Stress Field of the Earth’s Crust (Springer, Berlim, 2009).Google Scholar
Garel, J., Leven, I., Zhi, C., Nagapriya, K.S., Popovitz-Biro, R., Golberg, D., Bando, Y., Hod, O., and Joselevich, E., Nano Lett. 12, 6347 (2012).CrossRefGoogle Scholar