Hostname: page-component-7d684dbfc8-7nm9g Total loading time: 0 Render date: 2023-09-28T11:30:49.323Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Gamma Ray Detection with Cd0.9Zn0.1Te Based Detectors Grown Using a Te Solvent Method

Published online by Cambridge University Press:  15 November 2013

Sandeep K. Chaudhuri
Department of Electrical Engineering, 301 Main Street, University of South Carolina, Columbia, SC 29208, U.S.A.
Kelvin J. Zavalla
Department of Electrical Engineering, 301 Main Street, University of South Carolina, Columbia, SC 29208, U.S.A.
Ramesh M. Krishna
Department of Electrical Engineering, 301 Main Street, University of South Carolina, Columbia, SC 29208, U.S.A.
Krishna C. Mandal*
Department of Electrical Engineering, 301 Main Street, University of South Carolina, Columbia, SC 29208, U.S.A.
Get access


Cd0.9Zn0.1Te (CZT) single crystal has been grown using a tellurium solvent method. Two CZT crystals have been chosen from two different locations of the grown ingot. The two crystals were characterized using infrared transmission (IR) imaging and radiation detectors in planar geometry were fabricated on them. Current-voltage characteristics (I-V) revealed a resistivity of ∼8.6×1010 Ω−cm for detector A (6.9×6.9×4.8 mm3) and 6.7×1010 Ω−cm for detector B (11.5×11.7×2.6 mm3). IR imaging showed a lesser concentration of Te inclusions/precipitates in detector A. The transport properties viz., electron drift-mobility and electron mobility-lifetime product were measured using alpha spectroscopy in these detectors in a planar configuration. Detector A showed better charge transport properties compared to detector B. The superior transport properties of crystal A were reflected in the spectroscopic properties of the detectors. Gamma pulse height measurements using a 241Am isotope revealed an energy resolution of ∼5 % for detector A and ∼7 % for detector B. A digital spectrometer and a biparametric correction scheme was incorporated to recover the pulse height spectrum of high energy gamma rays (137Cs source) from the effect of poor hole movement.

Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Schlesinger, T. E., Toney, J. E., Yoon, H., Lee, E. Y., Brunett, B. A., Franks, L., and James, R. B., “Cadmium zinc telluride and its use as a nuclear radiation detector material,” Mater. Sci. and Eng. R, vol. 32, pp. 103189, 2001.CrossRefGoogle Scholar
Bolotnikov, A. E., Butcher, J., Camarda, G. S., Cui, Y., De Geronimo, G., Fried, J., Gul, R., Fochuk, P.M., Hamade, M., Hossain, A., Kim, K. H., Kopach, O. V., Petryk, M., Vernon, E., Yang, G., and James, R. B., “Array of virtual Frisch-grid CZT detectors with common cathode readout for correcting charge signals and rejection of incomplete charge-collection events,” IEEE Trans. Nucl. Sci. vol. 59, no. 6, pp. 15441551, 2012.CrossRefGoogle Scholar
Mandal, K. C., Kang, S. H., Choi, M., Bello, J., Zheng, L., Zhang, H., Groza, M., Roy, U. N., Burger, A., Holcomb, D. E., Wright, G. W., and Williams, J. A., “Simulation, modeling, and crystal growth of Cd0.9Zn0.1Te for nuclear spectrometers,” J. Electron. Mater. vol. 35, no. 6, pp. 12511256, 2006.CrossRefGoogle Scholar
Krishna, R. M., Hayes, T. C., Muzykov, P. G., and Mandal, K. C., “Low temperature crystal growth and characterization of Cd0.9Zn0.1Te for radiation detection applications,” Mater. Res. Soc. Symp. Proc., vol. 1341, pp. 3944, 2011.CrossRefGoogle Scholar
Krishna, R. M., Chaudhuri, S. K., Zavalla, K. J., and Mandal, K. C., “Characterization of Cd0.9Zn0.1Te based virtual Frisch grid detectors for high energy gamma ray detection,” Nucl. Instrum. Meth. Phys. Res. A, vol. 701, pp. 208213, 2013.CrossRefGoogle Scholar
Knoll, G. F., Radiation detection and measurement, 3rd ed., John Wiley and Sons, Inc.:New York, 2000, p. 480.Google Scholar
Chaudhuri, S. K., Lohstroh, A., Nakhostin, M., Sellin, P.J., “Digital pulse height correction in HgI2 γ-ray detectors,” J. Instrumentation, vol. 7, pp. T04002-1-13, 2012.CrossRefGoogle Scholar
Carini, G. A., Bolotnikov, A. E., Camarda, G. S., Wright, G. W., James, R. B., and Li, L., “Effect of Te precipitates on the performance of CdZnTe detectors,” Appl. Phys. Lett., vol. 88, no. 14 pp. 143515143517, 2006.CrossRefGoogle Scholar
Bolotnikov, A. E., Camarda, G. S., Carini, G. A., Cui, Y., Li, L., and James, R. B., “Cumulative effects of Te precipitates in CdZnTe radiation detectors,” Nucl. Instrum. Meth. A, vol. 571, no. 3, pp. 687698, 2007.CrossRefGoogle Scholar
Crocco, J., Bensalah, H., Zheng, Q., Corregidor, V., Avles, E., Castaldini, A., Fraboni, B., Cavalcoli, D., Cavallini, A., Vela, O., and Dieguez, E., “Study of asymmetries of Cd(Zn)Te devices investigated using photo-induced current transient spectroscopy, Rutherford backscattering, surface photo-voltage spectroscopy, and gamma ray spectroscopies,” J. Appl. Phys., vol. 112, no. 7, pp. 074503–1-9, 2012.CrossRefGoogle Scholar