No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
During the post-closure phase of a repository for low- and intermediate-level radioactive wastes significant quantities of gas will be generated, primarily by the anaerobic corrosion of metals and the degradation of organic wastes. A description is given of recent work carried out within the Nirex Safety Assessment Research Programme to address the generation of gas within a repository and the migration of gas from the repository to the biosphere. Theoretical modelling capabilities have been developed to address both of these issues. In order to gain confidence in such theoretical models, it is important to validate model predictions against observed experimental data. Preliminary experiments carried out to help validate the modelling approaches are described.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.