Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-10T07:02:08.914Z Has data issue: false hasContentIssue false

Graphyne Oxidation: Insights From a Reactive Molecular Dynamics Investigation

Published online by Cambridge University Press:  05 August 2013

L. D. Machado
Affiliation:
Applied Physics Department, State University of Campinas, 13083-970, Campinas, São Paulo, Brazil.
P. A. S. Autreto
Affiliation:
Applied Physics Department, State University of Campinas, 13083-970, Campinas, São Paulo, Brazil.
D. S. Galvao
Affiliation:
Applied Physics Department, State University of Campinas, 13083-970, Campinas, São Paulo, Brazil.
Get access

Abstract

Graphyne is a generic name for a family of carbon allotrope two-dimensional structures where sp2 (single and double bonds) and sp (triple bonds) hybridized states coexists. They exhibit very interesting electronic and mechanical properties sharing some of the unique graphene characteristics. Similarly to graphene, the graphyne electronic properties can be modified by chemical functionalization, such as; hydrogenation, fluorination and oxidation. Oxidation is of particular interest since it can produce significant structural damages.

In this work we have investigated, through fully atomistic reactive molecular dynamics simulations, the dynamics and structural changes of the oxidation of single-layer graphyne membranes at room temperature. We have considered α, β, and γ-graphyne structures. Our results showed that the oxidation reactions are strongly site dependent and that the sp-hybridized carbon atoms are the preferential sites to chemical attacks. Our results also showed that the effectiveness of the oxidation (estimated from the number of oxygen atoms covalently bonded to carbon atoms) follows the α, β, γ-graphyne structure ordering. These differences can be explained by the fact that for α-graphyne structures the oxidation reactions occur in two steps: first, the oxygen atoms are trapped at the center of the large polygonal rings and then they react with the carbon atoms composing of the triple bonds. The small rings of γ-graphyne structures prevent these reactions to occur. The effectiveness of β-graphyne oxidation is between the α- and γ-graphynes.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S. et al. ., Science 306, 666 (2004).CrossRefGoogle Scholar
Cheng, S. H. et al. ., Phys. Rev. B 81, 205435 (2010).CrossRefGoogle Scholar
Withers, F., Duboist, M., and Savchenko, A. K., Phys. Rev. B 82, 073403 (2010).CrossRefGoogle Scholar
Guinea, F., Katsnelson, M. I., and Geim, A. K., Nature Phys. 6, 30 (2010).CrossRefGoogle Scholar
Flores, M. Z. S., Autreto, P. A. S., Legoas, S. B., and Galvao, D. S., Nanotechnology 20, 465704 (2009).CrossRefGoogle Scholar
Paupitz, R., Autreto, P. A. S., Legoas, S. B., Srinivasan, S. G., van Duin, A. C. T., and Galvao, D. S., Nanotechnology 24, 035706 (2013).CrossRefGoogle Scholar
Baughman, R. H., Eckhardt, H., and Kertesz, M., J. Chem. Phys. 87, 6687 (1987).CrossRefGoogle Scholar
Malko, D., Neiss, C., Vines, F., and Gorling, A., Phys. Rev. Lett. 108, 086804 (2012).CrossRefGoogle Scholar
Coluci, V. R., Braga, S. F., Legoas, S. B., Galvao, D. S., and Baughman, R. H., Phys. Rev. B 68, 035430 (2003).CrossRefGoogle Scholar
Coluci, V. R., Braga, S. F., Legoas, S. B., Galvao, D. S., and Baughman, R. H., Nanotechnology 15, S142 (2004).CrossRefGoogle Scholar
Li, C. et al. ., J. Phys. Chem. C 115, 2611 (2011).CrossRefGoogle Scholar
Li, G. et al. ., Chem. Commun. 46, 3256 (2010).CrossRefGoogle Scholar
Kim, B. and Choi, H., Phys. Rev. B 86, 115435 (2012).CrossRefGoogle Scholar
Malko, D., Neiss, N. C., and Gorling, A., Phys. Rev. B 86, 0454434 (2012).CrossRefGoogle Scholar
Cranford, S. W. and Buehler, M. J., Nanoscale 4, 4587 (2012).CrossRefGoogle Scholar
van Duin, A. C. T., Dasgupta, S., Lorant, F., and Goddard, W. A. III, J. Phys. Chem. A 105, 9396 (2001).CrossRefGoogle Scholar
van Duin, A. C. T. and Damste, J. S. S., Org. Geochem. 34, 515 (2003).CrossRefGoogle Scholar
Chenoweth, K., van Duin, A. C. T., and Goddard, W. A. III, J. Phys. Chem. A 112, 1040 (2008).CrossRefGoogle Scholar
Plimpton, S., J. Comp. Phys. 117, 1 (1995). http://lammps.sandia.gov/ CrossRefGoogle Scholar