Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-25T15:07:04.786Z Has data issue: false hasContentIssue false

Hydrogen Induced Plastic Deformation of Thin Films

Published online by Cambridge University Press:  10 February 2011

A. Pundt
Affiliation:
Institut für Materialphysik, Universität Göttingen, D-37073 Göttingen
U. Laudahn
Affiliation:
Institut für Materialphysik, Universität Göttingen, D-37073 Göttingen
U. v. Hüilsen
Affiliation:
I. Physikalisches Institut, Universität Göttingen, D-37073 Göttingen
U. Geyer
Affiliation:
I. Physikalisches Institut, Universität Göttingen, D-37073 Göttingen
T. Wagner
Affiliation:
Max-Planck-Institut für Metal iforschung, D-70124 Stuttgart
M. Getzlafft
Affiliation:
Institut für Angewandte Physik, Universität Hamburg, D-20355 Hamburg
M. Bode
Affiliation:
Institut für Angewandte Physik, Universität Hamburg, D-20355 Hamburg
R. Wiesendanger
Affiliation:
Institut für Angewandte Physik, Universität Hamburg, D-20355 Hamburg
R. Kirchheim
Affiliation:
Institut für Materialphysik, Universität Göttingen, D-37073 Göttingen
Get access

Abstract

The mechanical behavior of a thin film that is clamped to an elastically hard substrate can be compared to a bulk metal by studying the absorption of hydrogen. Since hydrogen is dissolved in interstitial sites and exerts force on neighboring metal atoms, the in-plane stresses increase with increasing hydrogen concentration. In the case of Nb-films covered with a thin Pd layer, stresses of several GPa were measured. Nb and Pd films prepared by evaporation were loaded with hydrogen. Out-of-plane strain and in-plane stresses during electrolytic loading with hydrogen were determined by performing x-ray diffraction and substrate curvature measurements. At low H-concentrations the developing stresses correspond to a clamped film expanding elastically out-of-plane only. Above a critical H-concentration the films deform plastically. In some cases the critical hydrogen concentration corresponds to the terminal H-solubility, above which the hydride precipitates by emission of extrinsic dislocation loops. For the remaining cases a critical stress is reached before passing the phase boundary, which leads to the formation of misfit dislocations at the interface between film and substrate. The concomitant slip lines were observed on the surface of a Gd (0001) film using Scanning Tunneling Microscopy. An additional surface pattern that can be correlated with emitted dislocation loops was observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Peisl, H., in Hydrogen in Metals I, edited by Alefeld, G. and Völkl, J., Topics in Applied Physics Vol.28, Springer-Verlag Berlin 1978.Google Scholar
[2] Abromeit, A., Siebrecht, R., Song, G., Zabel, H., Klose, F., Nagengast, D., and Weidinger, A., J. Alloys Compounds 253 (1997) 58.Google Scholar
[3] Stillesjö, F., Hjörvarsson, B., and Zabel, H., Phys. Rev. B 54 (1996) 3079.Google Scholar
[4] Reisfeld, G., Jisrawi, N. M., Ruckmann, M. W., and Strongin, M., Phys. Rev. B 53 (1996) 4974.Google Scholar
[5] Yang, Q. M., Schmitz, G., Fähler, S., Krebs, H. U., and Kirchheim, R., Phys. Rev. B 54 (1996) 9131.Google Scholar
[6] Laudahn, U., Fäihler, S., Krebs, H.-U., Pundt, A., Bicker, M., Hülsen, U. V., Geyer, U., Kirchheim, R., Appl. Phys. Lett. 74 (1999) 647.Google Scholar
[7] Laudahn, U., Pundt, A., Bicker, M., Hülsen, U. v., Geyer, U., Wagner, T., Kirchheim, R., J. Alloys Compounds 293–295 (1999) 490.Google Scholar
[8] Schober, T. and Wenzl, H., Hydrogen in Metals II, eds. Alefeld, G., and Völkl, J., Topics in Applied Physics Vol.28, Springer-Verlag Berlin 1978.Google Scholar
[9] Landolt-Börnstein, , Group III, Vol.18, eds. Hellwege, K. H., and Madelung, O., Springer-Verlag Berlin 1979.Google Scholar
[10] Borchers, C., Laudahn, U., Pundt, A., Fähler, S., Krebs, H.-U., Kirchheim, R., accepted Phil. Mag. 1999.Google Scholar
[11] Fromm, E., and Gebhardt, E., “Gase und Kohlenstoff in Metallen”, Springer-Verlag Berlin 1976 Google Scholar
[12] Zabel, H., TMR-meeting Texel, Netherlands, 1999.Google Scholar
[13] Getzlaff, M., Bode, M., and Wiesendanger, R., Surf. Sci. 410 (1998) 189.Google Scholar
[14] Kirchheim, R., Sommer, F., and Schluckebier, G., Acta Metall. 30 (1982) 1059.Google Scholar
[15] Bicker, M., von Hülsen, U., Laudahn, U., Pundt, A., and Geyer, U., Rev. Sci. Instr. 69 (1998) 460.Google Scholar
[16] Stoney, G. G., Proc. R. Soc. London, Ser. A 82 (1909) 172.Google Scholar
[17] Nix, W.D., Met. Trans. A 20 (1989) 2217.Google Scholar
[18] Laudahn, U., thesis, Cuvillier Verlag Göttingen, 1998.Google Scholar
[19] Haasen, P., Physical Metallurgy, Cambridge Univ. Press 1996.Google Scholar
[20] Venkatraman, R., Bravman, J.C., J. Mater. Res. 7 (1992) 2040.Google Scholar
[21] Thompson, C.V., Scripta Metall., 28 (1993) 167.Google Scholar
[22] Freund, L.B., J. Appl. Mech. 54 (1987) 553.Google Scholar
[23] Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth, 27 (1974) 118.Google Scholar
[24] Fisher, E. S., Westlake, D. G., and Ockers, S. T., Phys. Stat. Sol. 28 (1975) 591.Google Scholar
[25] Pundt, A., Getzlaff, M., Bode, M., Kirchheim, R. and Wiesendanger, R., submitted to PRB.Google Scholar