Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-569ts Total loading time: 0.339 Render date: 2022-09-30T22:03:16.077Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Hydrogen Storage in Carbon Nanoscrolls: A Molecular Dynamics Study

Published online by Cambridge University Press:  01 February 2011

Vitor Coluci*
Affiliation:
coluci@ifi.unicamp.br, State University of Campinas, Applied Physics Department, Applied Physics,, State University of Campinas,, 13083-970 Campinas-SP-Brazil, Campinas, SP, 6165, Brazil
Scheila F. Braga
Affiliation:
scheila@ifi.unicamp.br, Brazil
Ray H. Baughman
Affiliation:
ray.baughman@utdallas.edu, United States
Douglas S. Galvão
Affiliation:
galvao@ifi.unicamp.br, Brazil
*
* Corresponding author: coluci@ifi.unicamp.br FAX: +551937885376
Get access

Abstract

We carried out molecular dynamics simulations with Tersoff-Brenner potentials in order to investigate the hydrogen uptake mechanisms and storage capacity of carbon nanoscrolls (CNSs). CNSs are jelly roll-like structures formed by wrapping graphene layers. Interlayer adsorption is an option for this material, which does not exist for single and multiwalled carbon nanotubes. We analyzed the processes of hydrogen physisorption and uptake mechanisms. We observed incorporation of hydrogen molecules in both external and internal scroll surfaces. Insertion in the internal cavity and between the scroll layers is responsible for 40% of the total hydrogen adsorption at 77 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Kalng, C. H., Bethune, D. S., and Heben, M. J., Nature 386, 377 (1997).CrossRefGoogle Scholar
2. Baughman, R. H., Zakhidov, A. A., and de Heer, W. A., Science 297, 787 (2002).CrossRefGoogle Scholar
3. Schlapbach, L. and Zuttel, A., Nature 414, 353 (2001).CrossRefGoogle Scholar
4. Chambers, A., Park, C., Terry, R., Baker, K., and Rodriguez, N. M., J. Phys. Chem. B 102, 4253 (1998).CrossRefGoogle Scholar
5. Ye, Y., Ahn, C. C., Witham, C., Fultz, B., Liu, J., Rinzler, A. G., Colbert, D., Smith, K. A., and Smalley, R. E., Appl. Phys. Lett. 74, 2307 (1999).CrossRefGoogle Scholar
6. Liu, C., Fan, Y. Y., Liu, M., Cong, H. T., Cheng, H. M., and Dresselhaus, M. S., Science 286, 1127 (1999).CrossRefGoogle Scholar
7. Chen, P., Wu, X., Lin, J., and Tan, K. L., Science 285, 91 (1999).CrossRefGoogle Scholar
8. Yang, R. T., Carbon 38, 623 (2000).CrossRefGoogle Scholar
9. Rzepka, M., Lamp, P., and de La Casa-Lillo, M. A., J. Phys. Chem. B 102, 10894 (1998).CrossRefGoogle Scholar
10. Wang, Q. and Johnson, J. K., J. Chem. Phys. 110, 577 (1999).CrossRefGoogle Scholar
11. Willians, K. A. and Eklund, P. C., Chem. Phys. Lett. 320, 352 (2000).CrossRefGoogle Scholar
12. Darkrim, F. L. and Levesque, D., J. Phys. Chem. B 104, 6773 (2000).CrossRefGoogle Scholar
13. Gu, C., Gao, G-Hua, Yu, Y-Xin, and Mao, Z-Qiang, Int. J. Hydrogen Energy 26, 691 (2001).CrossRefGoogle Scholar
14. Darkrim, F. L., Malbrunot, P., and Tartaglia, G. P., Int. J. Hydrogen Energy 27, 193 (2002).CrossRefGoogle Scholar
15. Levesque, D., Gicquel, A., Darkrim, F. L., and Kayiran, S. B., J. Phys.: Condens. Matter 14, 9285 (2002).Google Scholar
16. Guay, P., Stansfield, B. L., and Rochefort, L., Carbon 42, 2187 (2004).CrossRefGoogle Scholar
17. Ma, Y., Xia, Y., Zhao, M., Wang, R., and Mei, L., Phys. Rev. B 63, 115422 (2001).CrossRefGoogle Scholar
18. Ma, Y., Xia, Y., Zhao, M., and Ying, M., Phys. Rev. B 65, 155430 (2002).CrossRefGoogle Scholar
19. Lee, S. M. and Lee, Y. H., Appl. Phys. Lett. 76, 2877 (2000).CrossRefGoogle Scholar
20. Lee, S. M., An, K. H., Lee, Y. H., Seifert, G., and Frauenheim, T., J. Am. Chem. Soc. 123, 5059 (2001).CrossRefGoogle Scholar
21. Cheng, H. M., Yang, Q-Hong, and Liu, C., Carbon 39, 1447 (2001).CrossRefGoogle Scholar
22. Zuttel, A., Sudan, P., Mauron, Ph., Kiyobayashi, T., Emmenegger, Ch., and Schlapbach, L., Int. J. Hydrogen Energy 27, 203 (2002).CrossRefGoogle Scholar
23. Viculis, L. M., Mack, J. J., and Kaner, R. B., Science 299, 1361 (2003).CrossRefGoogle Scholar
24. Braga, S. F., Coluci, V. R., Legoas, S. B., Giro, R., Galvão, D. S., and Baughman, R. H., Nano Lett. 4, 881 (2004).CrossRefGoogle Scholar
25. Brenner, D. W., Phys. Rev. B 42, 9458 (1990).CrossRefGoogle Scholar
26. Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B., and Sinnott, S. B., J. Phys.: Condens. Matter 14, 783 (2002).Google Scholar
27. Mowrey, R. C., Brenner, D. W., Dunlap, B. I., Mintmire, J. W., and White, C. T., J. Chem. Phys. 95, 7138 (1991).CrossRefGoogle Scholar
28. Chang, S-P., Chen, G., and Gong, X.G., Phys. Rev. Lett. 87, 205502 (2001).CrossRefGoogle Scholar
29. Mao, Z., Garg, A., and Sinnott, S. B., Nanotechnology 10, 273 (1999).CrossRefGoogle Scholar
30. UFF-Universal 1.02 Molecular Force Field, available from Accelrys, Inc. in Cerius2 program http://www.accelrys.com Google Scholar
31. Berendsen, H. J. C., Postma, J. P. M., Vangunsteren, W. F., Dinola, A., and Haak, J. R., J. Chem. Phys. 81, 3684 (1984).CrossRefGoogle Scholar
32. Hu, Y. and Sinnot, S. B., J. Comput. Phys. 200, 251 (2004).CrossRefGoogle Scholar
33. Enoki, T., Miyajima, S., Sano, M., and Inokuchi, H., J. Mater. Res. 5, 435 (1990)CrossRefGoogle Scholar
34. Challet, S., Azais, P., Pellenq, R.J.-M., Isnard, O., Soubeyroux, J.-L., and Duclaux, L., J. Physics and Chemistry of Solids 65, 541 (2004).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Hydrogen Storage in Carbon Nanoscrolls: A Molecular Dynamics Study
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Hydrogen Storage in Carbon Nanoscrolls: A Molecular Dynamics Study
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Hydrogen Storage in Carbon Nanoscrolls: A Molecular Dynamics Study
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *