Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-fnprw Total loading time: 0.422 Render date: 2022-08-08T19:46:26.954Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

The Influence of Thermal Annealing on Microstructure and Mechanical Properties in High Performance Liquid Crystal Copolyesters

Published online by Cambridge University Press:  16 February 2012

Adriana Reyes-Mayer
Affiliation:
Laboratorio de Nanopolimeros y Coloides, Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mor. 62210, MEXICO. Facultad de Ciencias, Universidad Autonoma del Estado de México, Instituto Literario #100, Toluca, Edo de Mexico, C.P. 50000, MEXICO.
Amaury Constant
Affiliation:
Faculte des Sciences d’Orsay, Universite Paris Sud XI, Orsay, Cedex, FRANCE.
Angel Romo-Uribe*
Affiliation:
Laboratorio de Nanopolimeros y Coloides, Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mor. 62210, MEXICO.
Michael Jaffe
Affiliation:
New Jersey Institute of Technology, Newark NJ, U.S.A.
*
*Contact author: aromo-uribe@fis.unam.mx
Get access

Abstract

In this research we have focused on the influence of thermal treatment for periods of time on the thermal and mechanical properties of extruded films of a series of high-performance thermotropic liquid crystal polymers (LCPs). The dependence of microstructure, thermal and mechanical properties on the extent of thermal treatment is investigated. Especially synthesized wholly aromatic LCPs based on hydroxybenzoic acid (B), hydroxynaphthoic acid (N), terephthalic acid (TA) and biphenol (BP) are kindly supplied by Hoechst Celanese Research Corp in the form of 50 μm thick extruded films. Thus, the influence of monomer composition is also studied in order to contrast the influence of molecular conformation. Thermal treatments are carried out at temperatures close to the solid-to-nematic transition (Ts→n) for up to several hours under dry air conditions. The results show a profound influence of thermal annealing on morphology and mechanical modulus when annealing is carried out c.a. 40ºC below Ts→n, where solid-to-nematic transition and Young’s modulus are significantly increased.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jackson, W.J. and Kuhfuss, H. F., J. Polym. Sci. Polym. Chem. 14, 2043 (1976).CrossRefGoogle Scholar
2. Calundann, G.W. and Jaffe, M., Synthetic polymers 1517, 247 (1982).Google Scholar
3. Yoon, H.N., Charbonneau, L.F., Calundann, G.W., Adv. Mat. 4, 206 (1992).CrossRefGoogle Scholar
4. Czyborra, L. and Metzmann, F., Kunststoffe 88, 721 (1998).Google Scholar
5. Sawyer, L.C., Linstid, H.C. and Romer, M., Plastics Engineering 54, 37 (1998)Google Scholar
6. Collyer, A.A., Elseiver Appl. Sci., (1992).Google Scholar
7. Cakmak, M., Teitge, A., Zachmann, H.G. and White, J.L., J. Polym. Sci. Poly. Phys. 31, 371 (1993).CrossRefGoogle Scholar
8. Stamatoff, J.B., Mol. Cryst. Liq. Cryst, 110, 75 (1984).CrossRefGoogle Scholar
9. Nicholson, T.M. and Ward, I.M., Polymer 39, 315 (1998).CrossRefGoogle Scholar
10. Donald, A.M. and Windle, A.H., Liquid Crystalline Polymers . Cambridge: Cambridge University Press. (1992)Google Scholar
11. Romo-Uribe, A., Lemmon, T.J. and Windle, A.H., J. Rheol. 41, 1117 (1997).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Influence of Thermal Annealing on Microstructure and Mechanical Properties in High Performance Liquid Crystal Copolyesters
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The Influence of Thermal Annealing on Microstructure and Mechanical Properties in High Performance Liquid Crystal Copolyesters
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The Influence of Thermal Annealing on Microstructure and Mechanical Properties in High Performance Liquid Crystal Copolyesters
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *