Published online by Cambridge University Press: 26 February 2011
The single crystal growth of layered semiconductors GaSe and GaTe by vertical Bridgman technique using zone refined selenium (Se), tellurium (Te) and high purity (HP) gallium (Ga) have been described. The grown crystals (2.5 cm diameter and ∼10 cm long) have demonstrated efficient broadband tunable THz emission and as sensitive THz detectors. The crystals have shown promising characteristics with good optical quality, high dark resistivity, wide band gap (GaSe-2.01 eV and GaTe-1.66 eV at 300 K), good anisotropic (parallel, p & perpendicular, pa) electrical properties (σ∥ vs σ⊥ and μ∥ vs σ⊥) and long term stability. Different steps involved in processing GaSe and GaTe crystals as THz sources and sensors are described.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.