Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-30T06:02:55.276Z Has data issue: false hasContentIssue false

Liquid Phase Electroepitaxial (LPEE) Growth of GaSb and GaInAsSb

Published online by Cambridge University Press:  28 February 2011

Shanthi N. Iyer
Affiliation:
North Carolina A&T State University, Greensboro, NC 27411
Ali Abul-Fadl
Affiliation:
North Carolina A&T State University, Greensboro, NC 27411
Albert T. Macrander
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Jonathan H.Lewis
Affiliation:
North Carolina A&T State University, Greensboro, NC 27411
Ward J. Collis
Affiliation:
North Carolina A&T State University, Greensboro, NC 27411
James W. Sulhoff
Affiliation:
AT&T Bell Laboratories, Short Hills, NJ 07733
Get access

Abstract

Liquid phase electroepitaxial technique has been used for the growth of GaSb and GalnAsSb in the composition range corresponding to peak band gap wavelengths of 1.7-2.28μm. The growth rate of these layers were examined as a function of current density. The growth rates of these layers are typically 0.8μm/min. at a current density of 10A/cm2. The quality of the layers was evaluated by x-ray diffraction and room temperature photoluminescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1DeWinter, J.C., Pollack, M.A., Srivastava, A.K. and Zyskind, J.L., J. Electron. Mater. 14, 729 (1985).Google Scholar
2Astles, M., Hill, H.,Williams, A.J., Wright, P.J. and Young, M.L., J.Electron. Mater. 41 (1985).Google Scholar
3Drakin, A.E., Eliseev, Peter G., Sverdlov, B.N., Bochkarev, A.E., Dolginov, L.M. and Druzhinina, L.V., IEEE J.Quantum Electron QE–23, 1089 (1987).Google Scholar
4Joullie, A., Jia Hua, F., Krouta, F. and Mani, H., J.Cryst. Growth 75, 309 (1986).Google Scholar
5Cherng, M.J., Stringfellow, G.B., Kisker, D.W., Srivastava, A.K. and Zyskind, J.L., Appl.Phys. Letter 48, 419 (1986).Google Scholar
6Cherng, M.J.,Jen, H.R., Larsen, C.A., Stringfellow, G.B., Lundt, H. and Taylor, P.C., J.Cryst. Growth 77, 408 (1986).Google Scholar
7Tsang, W.T., Chiu, T.H., Kisker, D.W. and Ditzenberger, J.A., Appl. Phys. Lett. 46, 283 (1985).Google Scholar
8Chiu, T.H., Zyskind, J.L. and Tsang, W.T., J. Electron. Mater. 16, 57 (1987).Google Scholar
9Daniele, J.J. and Lewis, A., J. Electron. Mater. 12, 1015 (1983) .Google Scholar
10Okamoto, A., Lagowski, J. and Gatos, H.C., J. Appl. Phys. 53, 1706 (1982).Google Scholar
11Imamura, Y., Jastrzebski, L. and Gatos, H.C., J. Electrochem. Soc. 125, 1560 (1978)Google Scholar
12Abul-Fadl, A., stefanakos, E.K. and Collis, W.J., J. Cryst. Growth 11, 559 (1982).Google Scholar
13Jastrzebski, L., Lagowski, J., Gatos, H.C. and Witt, A.F., J. Appl.Phys. 49, 5901 (1978).Google Scholar
14Bryskiewicz, T., Lagowski, J. and Gatos, H.C., J. Appl. Phys. 51, 988 (1980).Google Scholar
15Moon, R.L., Antypas, G.A. and James, L.W., J. Electron. Mater. 3, 635 (1974).Google Scholar