Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-30T01:37:19.203Z Has data issue: false hasContentIssue false

Local Electronic Structure and Cohesion of Grain Boundaries in Ni3Al

Published online by Cambridge University Press:  22 February 2011

D. A. Muller
Affiliation:
Dept.. of Applied and Engineering Physics, Cornell University, Ithaca, NY., 14853
S. Subramanian
Affiliation:
Dept.. of Materials Science and Engineering, Cornell University, Ithaca, NY., 14853
S. L. Sass
Affiliation:
Dept.. of Materials Science and Engineering, Cornell University, Ithaca, NY., 14853
J. Silcox
Affiliation:
Dept.. of Applied and Engineering Physics, Cornell University, Ithaca, NY., 14853
P. E. Batson
Affiliation:
HBM Thomas J. Watson Research Center, Yorktown Heights, NY
Get access

Abstract

One of the fundamental questions concerning Ni3Al is why doping with boron improves the room temperature ductility of the polycrystalline material. Boron is thought to prevent environmental embrittlement and increase the cohesive strength of grain boundaries since it changes the fracture mode from intergranular to transgranular. This change in cohesive energy must be reflected in the bonding changes at the grain boundary which can be probed using spatially resolved electron energy loss spectroscopy (EELS). We have examined grain boundaries in both undoped and boron doped Ni0.76Al0.24 using EELS, EDX and ADF imaging in a UHV STEM. Ni-enrichment is seen in a 0.5–1 nm wide region at large angle grain boundaries, both in the absence and presence of B. EELS shows that B segregation can vary along the interface. The Ni L2, 3 core edge fine structure which is sensitive to the filling of the Ni d-band, shows only the boron rich regions of the grain boundary to have a bonding similar to that of the bulk material. These results demonstrate that boron segregation increases the cohesive energy and hence improves the fracture resistance of the grain boundary, by making the bonding at boundaries similar to that in the bulk. The measured changes in d band filling may also affect the local solubility of hydrogen.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. George, E.P., Liu, C.T. and Pope, D., Scripta Metall, 30, p.37 (1993).Google Scholar
2. Liu, C.T., Scripta Metall., 27, p.25 (1992).Google Scholar
3. Aoki, K. and Izumi, O., J. Japan Inst. Met., 43 p. 1190 (1979).Google Scholar
4. Liu, C.T., White, C.L. and Horton, J.A., Acta. Metall., 33, p.213 (1985).Google Scholar
5. Brenner, S.S., Ming-Jian, H, Scripta Metall., 25, p.1271 (1991).Google Scholar
6. Miller, M.K. and Horton, J.A., J. de Phys. 47 p. C7263 (1986).Google Scholar
7. Krzanowski, J.E., Scripta Metall., 23, p. 1219 (1989).Google Scholar
8. Mills, MJ., Scripta Metall., 23, p.2061 (1989).Google Scholar
9. Foiles, S.M., MRS Proceedings 81 p. 51 (1987).Google Scholar
10. Chen, S.P. et.al., Scripta Metall.,23, p.217 (1989).Google Scholar
11. Muller, D.A., Batson, P.E., Subramanian, S., Sass, S.L., J.Silcox MRS Proc 319, p299 (1994). Also submitted to Acta. Metall., July 1994.Google Scholar
12. Muller, D.A. and Silcox, J., Proc. 51st MSA proc p.626.(1993).Google Scholar
13. Crewe, A.V., Wall, J., Langmore, J., Science 168 p.1338 (1970).Google Scholar
14. Batson, P.E., Nature 366 p.728 (1993).Google Scholar
15. Browning, N.D., Chisholm, M.M., Pennycook, S.J., Nature 366 p. 143 (1993).Google Scholar
16. Muller, D.A., Tzou, Y., Raj, R., Silcox, J., Nature 366 p.725 (1993).Google Scholar
17. Leapman, R.D., Rez, P., Mayers, D.F., J.Chem.Phys. 72 p.1232 (1980).Google Scholar
18. Tomboulian, D.H., and Bedo, D.E., Phys. Rev. 104 p.590 (1956).Google Scholar
19. Colliex, C. and Jouffrey, B., Phil. Mag. 25 491511 (1972).Google Scholar
20. Brown, M., Peierls, R.E., Stern, E.A., Phys. Rev. B15 p.738 (1977).Google Scholar
21. Mattheiss, L.F., Dietz, R.E., Phys. Rev. B22 p.1663 (1980).Google Scholar
22. Pettifor, D.G. in “Electron Theory in Alloy Design”, Ed. Pettifor, D.G. and Cottrell, A.H., Alden Press (Oxford) p. 81 (1992).Google Scholar
23. Pasturel, A., Hichter, P., Cyrot-Lackmann, F., J Less Comm. Met. 86, p. 181 (1982).Google Scholar
24. Finnis, M.W., Sinclair, J.E., Phil Mag A 50, p.45 (1984).Google Scholar
25. Gelatt, CD., Ehrenreich, H. and Weiss, J.A., Phys. Rev. B17 p.1940 (1979).Google Scholar
26. Williams, A.R., Kubler, J. and Gelatt, CD., Phys. Rev. B19 p.6094 (1979).Google Scholar
27. Sieglin, W., Leiser, K.H. and Witte, H., Z. Elektrochem. 61, p. 359 (1957).Google Scholar
28. McMullan, D., Fallon, P.J., Ito, Y. and McGibbon, A.J., Proc EUREM 92, Electron Microscopy Vol. 1, Granada Spain p. 103 (1992).Google Scholar