Hostname: page-component-5d59c44645-jb2ch Total loading time: 0 Render date: 2024-03-03T16:23:12.913Z Has data issue: false hasContentIssue false

Low Temperature Fabrication and Surface Modification Methods for Fused Silica Micro- and Nanochannels

Published online by Cambridge University Press:  09 January 2014

Sumita Pennathur
Mechanical Engineering Department, University of California, Santa Barbara Santa Barbara, CA 93106 U.S.A.
Pete Crisalli
Mechanical Engineering Department, University of California, Santa Barbara Santa Barbara, CA 93106 U.S.A.
Get access


Electrokinetic based micro- and nanofluidic technologies provide revolutionary opportunities to separate, identify and analyze biomolecular species. Key to fully harnessing the power of such systems is the development of a robust method for integrated electrodes as well as a thorough understanding of the influence of the electrokinetic surface properties with and without different surface modifications. In this work, we demonstrate a surface micromachined fabrication approach for integrated addressable metal electrodes within centimeter-long nanofluidic channels using a low-temperature, xenon diflouride dry-release method for novel biosensing applications, as well as recent results from a joint theoretical and experimental study of electrokinetic surface properties in nano- and microfluidic channels fabricated with fused silica. The main contribution of this fabrication process involves the addition of addressable electrodes to a novel dry-release channel fabrication method, produced at <300°C, to be used in nanofluidic electronic sensing of biomolecules. Finally, we also show a novel method with which to coat our channels with silane based chemistries. Certain modifications are observed to show improved resistance to non-specific adhesion of both small molecules and proteins, indicating their further use as compatible surfaces in micro- and nanofluidic applications.

Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Pennathur, S., Santiago, J. G., Kattah, M. G., Steinman, J. B. and Utz, P., Anal. Chem. 79, 8316 (2007).CrossRefGoogle Scholar
Cross, J. D. S. and Craighead, A. G., J. Appl. Phys. 102, 1 (2007).CrossRefGoogle Scholar
Pennathur, S. and Santiago, J.G., Anal. Chem. 77, 6722 (2005).Google Scholar
Pennathur, S. and Santiago, J.G., Anal. Chem. 77, 6782 (2005).CrossRefGoogle Scholar
Fu, J. M. and Han, J., Appl. Phys. Lett. 87, 263902 (2005).CrossRefGoogle Scholar
Fu, J. Y. and Han, J., Phys. Rev. Lett. 97, 018103 (2006).CrossRefGoogle Scholar
Wang, Y. C., Stevens, A.L. and Han, J., Anal. Chem. 77, 4293 (2005).CrossRefGoogle Scholar
Han, J. C., et al. ., Science 288, 1026 (2000).CrossRefGoogle Scholar
Kaji, N., et al. ., Anal. Chem. 76, 15 (2004).CrossRefGoogle Scholar
Levene, M. J., et al. ., Science 299, 682 (2003).CrossRefGoogle Scholar
Xia, D., et al. ., Nano Letters 8, 1610 (2008).CrossRefGoogle Scholar
Richard, B. M., Schasfoort, S. S., and Hendrikse, J., Science, 286, 942 (1999).Google Scholar
Squires, A. S. K., Phys. Fluids. 21, 042001 (2009).Google Scholar
Wood, D.K. and Cleland, A.N., Rev. Sci. Instr. 78, 104301 (2007).CrossRefGoogle Scholar
Haneveld, J., et al. ., J. Micromech. Microeng. 13, S62 (2003).CrossRefGoogle Scholar
Jacobson, S. C. and Ramsey, J. M., Anal. Chem. 67, 2059 (1995).CrossRefGoogle Scholar
Han, C., et al. ., Appl. Phys. Lett. 81, 174 (2002).Google Scholar
Lee, C., et al. . A nanochannel fabrication technique using chemical-mechanical polishing (CMP) and thermal oxidation. in IEEE Nanotechnology. 2003. San Francisco.Google Scholar
Li, W., et al. ., Nanotechnology 14, 578 (2003).CrossRefGoogle Scholar
Sparreboom, W., et al. ., Lab Chip 8, 6 (2008).CrossRefGoogle Scholar
Tas, N.R., et al. ., Nano Lett. 2, 2 (2002).CrossRefGoogle Scholar
Eijkel, J. C. T. and Berg, A. V. D., Microfluid. Nanofluidics 1, 249 (2005).CrossRefGoogle Scholar
Perry, J. L., et al. ., Microfluid. Nanofluidics 2, 185 (2005).CrossRefGoogle Scholar
Stern, M. B., Geis, M.W., and Curtin, J.E., J. Vac. Sci. Technol. B 15, 5 (1997).CrossRefGoogle Scholar
Chen, J. F., Ji, H. F. and Varahramyan, K., Microelectron. Eng. 85, 500 (2007).CrossRefGoogle Scholar
Zhu, T., Mastropaolo, E., Lee, K. K. and Cheung, R., J. Vac. Sci. Tech. B 25, 2553 (2007).CrossRefGoogle Scholar
Chu, P. B., Yeht, R., Lin, G., Huang, J. C. P. and Warneket, E. A., Pister, K. S. J.. Controlled Pulse-Etching with Xenon Difluoride. in IEEE Transducers. 1997. Chicago.Google Scholar
Brazzle, J. D. and Mastrangelo, Carlos H.. Modeling and Characterization of Sacrificial Polysilicon Etching Using Vapor-Phase Xenon Difluoride. in IEEE MEMS. 2004. Maastricht, Netherlands.Google Scholar
Srinivasan, K., Pohl, C. and Avdalovic, N., Anal. Chem. 69, 2798 (1997).CrossRefGoogle Scholar
Munro, N. J., Hulhmer, A. F. R. and Landers, J. P., Anal. Chem. 73, 1784 (2001).CrossRefGoogle Scholar
Wong, I. and Ho, C.M., Microfluid. Nanofluidics 7, 291 (2009).CrossRefGoogle Scholar
Estephan, Z. G., Schlenoff, P. S. and Schlenoff, J. B., Langmuir 27, 6794 (2011).CrossRefGoogle Scholar
Wu, L., Guo, Z., Meng, S., Zhong, W., Du, Q. and Chou, L. L., ACS Appl. Mater. Interfaces, 2, 2781 (2010)CrossRefGoogle Scholar