Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-17T16:47:32.487Z Has data issue: false hasContentIssue false

The Microstructure and Local Piezoelectric Response in Polymer Nanocomposites with Different Ferroelectric Crystalline Additions

Published online by Cambridge University Press:  18 June 2013

Dmitry A. Kiselev
Affiliation:
National University of Science and Technology “MISiS”, Leninskiy pr. 4, 119049 Moscow, Russian Federation
Mikhail D. Malinkovich
Affiliation:
National University of Science and Technology “MISiS”, Leninskiy pr. 4, 119049 Moscow, Russian Federation
Yuriy N. Parkhomenko
Affiliation:
National University of Science and Technology “MISiS”, Leninskiy pr. 4, 119049 Moscow, Russian Federation
Alexandr V. Solnyshkin
Affiliation:
National University of Science and Technology “MIET”, Russian Federation Tver State University, Russian Federation
Alexey A. Bogomolov
Affiliation:
Tver State University, Russian Federation
Maxim V. Silibin
Affiliation:
National University of Science and Technology “MIET”, Russian Federation University of Aveiro, Portugal
Sergei A. Gavrilov
Affiliation:
National University of Science and Technology “MIET”, Russian Federation
Vladimir V. Shvartsman
Affiliation:
Institute for Materials Science, University of Duisburg-Essen, Essen, Germany
Doru C. Lupascu
Affiliation:
Institute for Materials Science, University of Duisburg-Essen, Essen, Germany
Get access

Abstract

In this work, we report on local ferroelectric and piezoelectric properties of nanostructured polymer composites P(VDF-TrFE)+x(Ba,Pb)(Zr,Ti)O3 (x = 0 - 50 %). High-resolution imaging of ferroelectric domains, local polarization switching, and polarization relaxation dynamics were studied by piezoresponse force microscopy. In particular, we found that (Ba,Pb)(Zr,Ti)O3 inclusions usually show a strong unipolar piezoresponse signal, as compared to the polymer matrix. By scanning under high dc voltage the films can be polarized uniformly under both positive and negative electric fields. Stability of the polarized state is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kepler, R. G. and Anderson, R. A., Adv. Phys. 41, 1 (1992).CrossRefGoogle Scholar
Lovinger, A. J., Science 220, 1115 (1983).CrossRefGoogle Scholar
Bune, A. V., Fridkin, V. M., Ducharme, S., Blinov, L. M., Palto, S. P., V.Sorokin, A., Yudin, S. G., and Zlatkin, A., Nature (London) 391, 874 (1998).CrossRefGoogle Scholar
Xia, F. Razavi, B., Xu, Haisheng, Cheng, Z.-Y., and Zhang, Q. M., J. Appl. Phys. 92, 3111 (2002).CrossRefGoogle Scholar
Tsutsumi, N. and Otsuji, M., J. Appl. Phys. 102, 104101 (2007).CrossRefGoogle Scholar
Tsutsumi, N., Yoda, S, and Sakai, W., Polym. Int. 56, 1254 (2007).CrossRefGoogle Scholar
Solnyshkin, A.V., Kiselev, D.A., Bogomolov, A.A., Kholkin, A.L., Künstler, W., and Gerhard, R.. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques. 2, 692 (2008).CrossRefGoogle Scholar
Kim, P., Doss, N. M., Tillotson, J. P., Hotchkiss, P. J., Pan, M. J., Marder, S. R., Li, J. Y., Calame, J. P., and Perry, J. W., ACS Nano 3, 2581 (2009).CrossRefGoogle Scholar
Li, J. J., Seok, S. I., Chu, B. J., Dogan, F., Zhang, Q. M., and Wang, Q., Adv. Mater. 21, 217 (2009).CrossRefGoogle Scholar
Polizos, G., Tomer, V., Manias, E., and Randall, C. A., J. Appl. Phys. 108, 074117 (2010).CrossRefGoogle Scholar
Solnyshkin, A.V., Morsakov, I.M., Kanareikin, A.G., and Bogomolov, A.A.. Bulletin of the Russian Academy of Sciences: Physics. 74, 1287 ( 2010).CrossRefGoogle Scholar
Zhou, Y. C., Wang, H., Xiang, F., Zhang, H., Yu, K., and Chen, L., Appl. Phys. Lett. 98, 182906 (2011).CrossRefGoogle Scholar