Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-w9xp6 Total loading time: 0.228 Render date: 2022-11-29T20:27:36.423Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue false

Microstructure of sputter-deposited noble metal-incorporated oxide thin films patterned by means of laser interference

Published online by Cambridge University Press:  22 June 2011

Rodolphe Catrin*
Affiliation:
Functional Materials, Saarland University, Campus D3.3, D-66123 Saarbruecken, Germany.
Thomas Gries
Affiliation:
Functional Materials, Saarland University, Campus D3.3, D-66123 Saarbruecken, Germany.
David Horwat
Affiliation:
Institut Jean Lamour, Département CP2S, UMR 7198, École des Mines de Nancy, Parc de Saurupt, F-54042 Nancy, France.
Sylvie Migot
Affiliation:
Institut Jean Lamour, Département CP2S, UMR 7198, École des Mines de Nancy, Parc de Saurupt, F-54042 Nancy, France.
Frank Muecklich
Affiliation:
Functional Materials, Saarland University, Campus D3.3, D-66123 Saarbruecken, Germany.
*
*Corresponding author. Tel.: +49 681 302 70548; fax: +49 681 302 70502. E-mail address: r.catrin@mx.uni-saarland.de (R. Catrin)
Get access

Abstract

Laser interference patterning-induced microstructural modifications have been investigated in two noble metal-incorporated oxide thin film systems: Pd0.25Pt0.75Ox and gold-incorporated yttria-stabilized zirconia - Au-YSZ. Transmission electron microscopy was used to investigate the influence of the laser treatment on the microstructure of the samples. In the case of Pd0.25Pt0.75Ox, the formation of a nanocomposite arrangement resulted from the precipitation of metal nanograins in the oxide matrix triggered by laser irradiation. In Au-YSZ, the starting microstructure consisted of gold nanograins embedded in a YSZ matrix. A noticeable growth and coalescence of gold nanograins occurred near the surface in the region of maximum interference. Simultaneously, a foamy morphology, mostly consisting of gold crystals, was formed at the film surface. In contrast to thermal annealing, the laser treatment proposed here is a fast procedure to partially relocate gold at the film surface and provide a local solid lubrication.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

aCurrently at Institut Jean Lamour, Département CP2S, UMR 7198, École des Mines de Nancy, Parc de Saurupt, F-54042 Nancy, France.

References

REFERENCES

1. Pierson, J.F., Baija, M., Horwat, D., J. Cryst. Growth 311 (2009), pp. 349354.CrossRefGoogle Scholar
2. Horwat, D., Endrino, J.L., Boreave, A., Karoum, R., Pierson, J.F., Weber, S., Anders, A., Vernoux, Ph., Catal. Comm. 10 (2009), pp. 14101413.CrossRefGoogle Scholar
3. Catrin, R., Horwat, D., Pierson, J.F., Migot, S., Hu, Y., Muecklich, F., Appl. Surf. Sci. 257 (2011), pp. 52235229.CrossRefGoogle Scholar
4. Muecklich, F., Lasagni, A., Daniel, C., Int. J. Mater. Res. 97 (2006), pp. 13371344.CrossRefGoogle Scholar
5. Catrin, R., Lasagni, A., Gachot, C., Schmid, U., Mücklich, F., Adv. Eng. Mat. 10 (2008), pp. 466470.CrossRefGoogle Scholar
6. Gachot, C., Catrin, R., Lasagni, A., Schmid, U., Mücklich, F., Appl. Surf. Sci 255 (2009), pp. 56265632.CrossRefGoogle Scholar
7. Detemple, E., Leibenguth, P., Gachot, C., Mücklich, F., Thin Solid Films 519 (2010), pp. 736741.CrossRefGoogle Scholar
8. Horwat, D., Zakharov, D.I., Endrino, J.L., Soldera, F., Anders, A., Migot, S., Karoum, R., Vernoux, Ph., Pierson, J.F., Surf. Coat. Technol., doi:10.1016/j.surfcoat.2010.12.021.Google Scholar
9. Bond, G.C., Thompson, D.T., Gold Bull. 33 (2000), pp. 4151.CrossRefGoogle Scholar
10. Voevodin, A. A., Hu, J. J., Fitz, T. A., Zabinski, J. S., Surf. Coat. Technol. 146-147 (2001), pp. 351356.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Microstructure of sputter-deposited noble metal-incorporated oxide thin films patterned by means of laser interference
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Microstructure of sputter-deposited noble metal-incorporated oxide thin films patterned by means of laser interference
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Microstructure of sputter-deposited noble metal-incorporated oxide thin films patterned by means of laser interference
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *