Hostname: page-component-7d684dbfc8-8ckrc Total loading time: 0 Render date: 2023-09-28T11:18:26.028Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Microstructures in Pb(In1/2Nb1/2)O3 with the Perovskite B-site Randomness

Published online by Cambridge University Press:  29 February 2012

S. Mori*
Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
K. Kurushima
Toray Research Center, Ohtsu, Shiga 520-8567, Japan.
K. Kobayashi
Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
H. Ohwa
Gifu University, Gifu 501-1193, Japan.
N. Yasuda
Gifu University, Gifu 501-1193, Japan.
K. Ohwada
Spring 8, Japan Atomic Energy Agency, Sayo-cho, Hyogo 679-5148, Japan
Get access


We have investigated microstructures in both the antiferroelectric (AFE) and relaxor states of Pb(In1/2Nb1/2)O3 (PIN) with the perovskite structure by a transmission electron microscopy (TEM). Electron diffraction (ED) experiments revealed that the AFE state is characterized as the modulated structure with the modulation vector of q=1/4 1/4 0. High-resolution TEM images clearly show the coexistence of two types of domains consisting of the modulated and the nonmodulated structures with the 100 ∼ 200 nm size. On the other hand, in the relaxor state there appear two types of diffuse scatterings in the ED patterns. One is diffuse spots at the 1/2 1/2 0-type reciprocal positions and the other is diffuse streaks elongating along the <110> direction around the fundamental spots. The real-space TEM images clearly demonstrate the presence of nanodomains with the average size of ∼ 5 nm. These nanodomains in the relaxor state should be responsible for the characteristic dielectric properties.

Research Article
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1. Park, S. and Shrout, T. R., J. Apll. Phys. 82, 1804 (1997).CrossRefGoogle Scholar
2. Uchino, K., Piezoelectric actuators and ultrasonic motors (Kluwer Academic, Boston) (1996).CrossRefGoogle Scholar
3. Service, R. F., Science 275, 1878 (1997).CrossRefGoogle Scholar
4. Bursill, L.A., Ferroelectrics 191, 129 (1997).CrossRefGoogle Scholar
5. Kupriyanov, M. F., Turik, A. V., Zaitsev, S. M. and Fesenko, E. G., Phase Transit. 4, 65 (1983).CrossRefGoogle Scholar
6. Nomura, K., Yasuda, N., Ohwa, H. and Terauchi, H., J. Phys. Soc. Jpn. 66, 1856 (1997)CrossRefGoogle Scholar
7. Randall, C. A., Barber, D. J., Groves, P. and Whatmore, R.W., J. Mater. Sci. 23, 3678, (1988).CrossRefGoogle Scholar
8. Prokopalo, O.I., Raevskii, I. P., Malitskaya, M. A., Popov, Yu. M., Bokov, A. A. and Smotrakov, V. G., Ferroelecrics 45, 89 (1982).CrossRefGoogle Scholar
9. Bokov, A. A., Raevskii, I. P., and Smotrakov, V. G., Sov. Phys. Solid State 26, 1708 (1984).Google Scholar
10. Groves, P., J. Phys. C 19, 5103 (1986).CrossRefGoogle Scholar
11. Ohwa, H., Iwata, M., Orihara, H., Yasuda, N. and Ishibashi, Y., J. Phys. Soc. Jpn. 69, 1533 (2000).CrossRefGoogle Scholar
12. Ohwada, K. and Tomita, Y., J. Phys. Soc. Jpn., 79, 011012 (2010).CrossRefGoogle Scholar
13. Kurushima, K., Ohwa, H., Yasuda, N., Ohwada, K. and Mori, S.. (unpublished).Google Scholar
14. Fu, D., Taniguchi, H., Itoh, M., Koshihara, S., Yamamoto, N., and Mori, S., Phys. Rev. Lett. 103, 207601 1-4 (2009).CrossRefGoogle Scholar