Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-04-30T16:24:35.256Z Has data issue: false hasContentIssue false

Modeling Thermopower in AlPdMn Based Quasicrystalline Systems

Published online by Cambridge University Press:  17 March 2011

A. L. Pope
Affiliation:
Clemson University, Clemson, SC 29634
B. M. Zawilski
Affiliation:
Clemson University, Clemson, SC 29634
R. Gagnon
Affiliation:
McGill University, Montreal, Canada
T. M. Tritt
Affiliation:
Clemson University, Clemson, SC 29634
J. Strom-Olsen
Affiliation:
McGill University, Montreal, Canada
R. Schneidmiller
Affiliation:
Clemson University, Clemson, SC 29634
J. Kolis
Affiliation:
Clemson University, Clemson, SC 29634
Get access

Abstract

We report room temperature thermopower values and the temperature dependence for several AlPdMn based quasicrystals. In an effort to further understand the complexities of electrical transport in quasicrystalline systems, thermopower data for icosahedral Al71Pd21Mn8-XReX will be presented and discussed. A relation of room temperature thermopower to the curvature of the thermopower is demonstrated. We propose an empirical fit to the thermopower data, utilizing three free variables. The physical significance of the fit parameters is discussed. These results are discussed in brief concerning the relation to the application of quasicrystals for use as thermoelectric materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Slack, G. A., in CRC Handbook on Thermoelectrics, Rowe ed (1995), ref 2, 407 Google Scholar
2. Shechtman, D., Blech, I., Gratias, D. and Cahn, J.W., Phys. Rev. Lett., 53, 1951 (1984).Google Scholar
3. Chernikov, M. A., Bianchi, A., Ott, H. R.. Phys. Rev. B. 51, 153 (1995).Google Scholar
4. Pope, A.L., Tritt, T.M., Chernikov, M. A., Feuerbacher, M.. App. Phys. Lett., 75, 1854 (1999).Google Scholar
5. Cyrot-Lackmann, F., Journal of Metastable and Nanocrystalline Materials, 1, 43 (1999).Google Scholar
6. Giroud, F., Grenet, T., Berger, C., Lindqvist, P., Gignoux, C., and Fourcaudot, C.. Czechoslovak Journal of Physics, 46, 2709 (1996).Google Scholar
7. Guo, Q. and Poon, S.J.. Phys. Rev. B. 54, 12793 (1996).Google Scholar
8. Tsai, A. P.et al, Phil.Mag.Letts.,Vol 61, 9 (1990).Google Scholar
9. Pope, A. L., Schneidmiller, R., Kolis, J. W., Tritt, T. M., Gagnon, R., Strom-Olsen, J., Legault, S.. Phys. Rev. B 63, 052202 (2001)Google Scholar
10. Morales, F. and Escudero, R.. Bull. Am. Phys. Soc. 44, 2 (1999).Google Scholar
11. Mott, N. F.. Metal Insulator Transitions. Taylor and Francis Ltd,. (1974).Google Scholar
12. Janot, C.. Quasicrystals; A Primer. Clarendon Press., Oxford (1997).Google Scholar
13. Janot, C.. Phys. Rev. B 53, 181 (1996).Google Scholar