Hostname: page-component-54dcc4c588-5q6g5 Total loading time: 0 Render date: 2025-10-05T14:53:55.841Z Has data issue: false hasContentIssue false

Modifying Crystallographic Orientations of Polycrystalline SiFilms Using Ion Channeling

Published online by Cambridge University Press:  25 February 2011

K. T-Y. Kung
Affiliation:
Department of Electrical Engineering and Computer Science Massachusetts Institute of technology, Cambridge, MA 02139
R. B. Ivepson
Affiliation:
Department of Electrical Engineering and Computer Science Massachusetts Institute of technology, Cambridge, MA 02139
R. Reif
Affiliation:
Department of Electrical Engineering and Computer Science Massachusetts Institute of technology, Cambridge, MA 02139
Get access

Abstract

Polycrystalline silicon films 4800 Å thick deposited via low pressurechemical vapor deposition on oxidized silicon wafers have been amorphized bysilicon ion implantation and subsequently recrystallized at 700°C. Due tochanneling of the ions through grains whose <110> axes weresufficiently parallel to the beam, these grains survived the implantationstep and acted as seed crystals for the solid-phase epitaxial regrowth ofthe film. This work suggests the feasibility of combining ion implantationand furnace annealing to generate large-grain, uniformly orientedpolycrystal1ine films on amorphous substrates. It is a potentiallow-temperature silicon-on-insulator technology.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

1. Lam, H. W., Pinizzotto, R. F., and Tasch, A. F. Jr., J. Electrochem. Soc. 128 1981 (1981); Celler, G. K., Trimble, L. E., Nq, K. K., Leamy, H. J., and Baumgart, H., Appl. Phys. Lett. 40 1043 (1982).Google Scholar
2. Inoue, T., Shibata, K., Kato, K., Yoshii, T., Higashinakagawa, I., Taniquchi, K., and Kashiwaqi, M., Mat. Res. Soc. Symp. Proc. 23 523 (1984); Knapp, J. A. and Picraux, S. T., Mat. Res. Soc. Symp. Proc. 23 533 (1984).Google Scholar
3. Pinizzotto, R. F., Lam, H. W., and Vaandrager, B. L., Appl. Phys. Lett. 40 388 (1982); Fan, J. C. C., Tsaur, B-Y., Chapman, R. L., and Geis, M. W., Appl. Phys. Lett. 41 186 (1982).Google Scholar
4. Geis, M. W., Flanders, D. C., and Smith, H. I., Appl. Phys. Lett. 35 71 (1979); Geis, M. W., Antoniadis, D. A., Silversmith, D. J., Mountain, R. W., and Smith, H. I., Appl. Phys. Lett. 37 454 (1980).Google Scholar
5. Roth, J. A., Olson, G. L., and Hess, L. D., Mat. Res. Soc. Symp. Proc. 23 431 (1984); Yamamoto, H., Ishawara, H., Furukawa, S., Tamura, M., and Tokuyama, T., Mat. Res. Soc. Symp. Proc. 25 511 (1984).Google Scholar
6. Reif, R. and Knott, J. E., Electron. Lett. 17 586 (1981).Google Scholar
7. Kwizera, P. and Reif, R., Appl. Phys. Lett. 41 379 (1982); Kwizera, P. and Reif, R., Thin Solid Films 100 227 (1983).Google Scholar
8. Iverson, R. B. and Reif, R., Mat. Res. Soc. Symp. Proc. 27 543 (1984).Google Scholar
9. Kamins, T. I., Mandurah, M. M., and Saraswat, K. C., J. Electrochem. Soc. 125 927 (1978).Google Scholar
10. Estimated using: (a) the channeling half angle ψ1/2 = 6° for 103 keV Ra ions in <110> Si measured by c. Jech, Phys. Lett. 39A 417 (1972); and (b) the approximate relation ψ1/2 ∝ (Z/E)1/2 discussed in Grahmann, H., Feuerstein, A., and Kalbitzer, S., Rad. Effects 29 117 (1976).+Si+measured+by+c.+Jech,+Phys.+Lett.+39A+417+(1972);+and+(b)+the+approximate+relation+ψ1/2+∝+(Z/E)1/2+discussed+in+Grahmann,+H.,+Feuerstein,+A.,+and+Kalbitzer,+S.,+Rad.+Effects+29+117+(1976).>Google Scholar