Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-30T05:06:59.061Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulations of Low Energy Displacement Cascades in the Ordered Compound CuTi

Published online by Cambridge University Press:  28 February 2011

H. Zhu
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
N. Q. Lam
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
R. Devanathan
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
M. J. Sabochick
Affiliation:
Gulf States Utilities Co., Beaumont, TX 77704
Get access

Abstract

The properties of low-energy (≤500 eV) displacement cascades in the ordered intermetallic compound CuTi have been investigated by molecular dynamics simulations in conjunction with recently-developed embedded-atom potentials. Various aspects of the time evolution of cascades produced by Cu and Ti primary knock-on atoms have been considered, including the dynamics of Frenkel-pair production, generation of ‘pure’ replacements and anti-site defects, and the anisotropy of the threshold energy for displacement. The spatial distributions of Frenkel defects and the damage function have been analyzed, based on information obtained from various simulated events corresponding to different recoil directions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. King, W.E. and Benedek, R., J. Nucl. Mater. 117 (1983) 26.CrossRefGoogle Scholar
2. Diaz de la Rubia, T., Averback, R.S., Benedek, R., and King, W.E., Phys Rev. Lett. 59 (1987) 1930.CrossRefGoogle Scholar
3. English, C.A., Phythian, W.J., and Foreman, A.J.E., J. Nucl. Mater. 174, 135 (1990).CrossRefGoogle Scholar
4. Diaz de la Rubia, T. and Guinan, M.W., J. Nucl. Mater. 174 (1990) 151.CrossRefGoogle Scholar
5. Hsieh, H., Diaz de la Rubia, T., Averback, R.S., and Benedek, R., Phys. Rev. B 40 (1989) 9986.Google Scholar
6. Diaz de la Rubia, T., Averback, R.S., Benedek, R., and Hsieh, H., J. Mater. Res. 4, 579 (1989).Google Scholar
7. Guinan, M.W. and Kinney, J.H., J. Nucl. Mater. 103&104 (1981) 1319.Google Scholar
8. Sabochick, M.J. and Lam, N.Q., Phys. Rev. B 43 (1991) 5243.Google Scholar
9. Daw, M.S., Baskes, M.I. and Foiles, S.M. (private Communication).Google Scholar
10. Ziegler, J., Biersack, J.P., and Littmark, U., The Stopping and Range of Ions in Solid (Pergamon, New York, 1985), Vol. 1.Google Scholar
11. Kinchin, G.H. and Pease, R.S., Rep. Prog. Phys. 18 (1955) 1.CrossRefGoogle Scholar