Skip to main content Accessibility help
×
Home
Hostname: page-component-5959bf8d4d-9w8k4 Total loading time: 0.36 Render date: 2022-12-08T03:24:24.098Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

A Molecular Dynamics Study of the Rotational Dynamics and Polymerization of C60 in C60-Cubane Crystals

Published online by Cambridge University Press:  01 February 2011

Vitor Coluci
Affiliation:
vitor@ceset.unicamp.br, State University of Campinas, Limeira, Brazil
Fernando Sato
Affiliation:
sjfsato@ifi.unicamp.br, State University of Campinas, Campinas, Brazil
Scheila F. Braga
Affiliation:
scheila@ifi.unicamp.br, State University of Campinas, Campinas, Brazil
Munir S. Skaf
Affiliation:
skaf@iqm.unicamp.br, State University of Campinas, Campinas, Brazil
Douglas S Galvao
Affiliation:
galvao@ifi.unicamp.br, State University of Campinas, Campinas, Brazil
Get access

Abstract

Recently, heteromolecular crystals of fullerene C60 and cubane (C8H8) have been synthesized. For some temperatures the C60 molecules are free to rotate whereas cubanes behave like a static bearing in a so-called rotor-stator phases. In this work we report classical and tight-binding molecular dynamics simulations in order to investigate the rotor-stator dynamics and polymerization processes. Our results show that, for 200 K and 400 K, cubane molecules remain basically fixed, presenting only thermal vibrations within the timescale of our simulations, while C60 fullerenes show rotational motions. Fullerenes perform “free” rotational motions at short times (< 1 ps), small amplitude hindered rotational motions (librations) at intermediate times, and rotational diffusive dynamics at long times (> 10 ps). Random copolymerization among cubanes and fullerenes were observed when temperature is increased, leading to the formation of a disordered structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eaton, P. E., Angew. Chem. Int. Ed. Engl. 31, 1421 (1992).CrossRefGoogle Scholar
2. Pekker, S., Kováts, É., Oszlányi, G., Bényei, Gy., Klupp, G., Bortel, G., Jalsovszky, I., Jakab, E., Borondics, F., Kamarás, K., Bokor, M., Kriza, G., Tompa, K., Faigel, G., Nature Materials 4, 764 (2005).CrossRefGoogle Scholar
3. Kováts, É., Klupp, G., Jakab, E., Pekker, Á., Kamarás, K., Jalsovszky, I., Pekker, S., Phys. Stat. Sol. (b) 243, 2985 (2006).CrossRefGoogle Scholar
4. Pekker, S., Kováts, É., Oszlányi, G., Bényei, Gy., Klupp, G., Bortel, G., Jalsovszky, I., Jakab, E., Borondics, F., Kamarás, K., Faigel, G., Phys. Stat. Sol. (b) 243, 3032 (2006).CrossRefGoogle Scholar
5. Iwasiewicz-Wabnig, A., Sundqvist, B., Kováts, É., Jalsovszky, I., Pekker, S., Phys. Rev. B 75, 024114 (2007).CrossRefGoogle Scholar
6. MacKerell, A. D. Jr., Bashford, D., Bellott, M., Dunbrack, R. L. Jr, Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. E. III, Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M., J. Phys. Chem. B 102, 3586 (1998).CrossRefGoogle Scholar
7. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L., Schulten, K., J. Comput. Chem. 26, 1781 (2005).CrossRefGoogle Scholar
8. Brünger, A., Brooks, C. B., Karplus, M., Chem. Phys. Lett. 105, 495 (1984).CrossRefGoogle Scholar
9. Frenkel, D. and Smit, B., Understanding molecular simulation: from algorithms to applications, Academic Press, San Diego, CA, 2002.Google Scholar
10. Porezag, D., Frauenheim, T., Kohler, T., Seifert, G., Kaschner, R., Phys. Rev. B 51, 12947 (1995).CrossRefGoogle Scholar
11. Rurali, R., Hernandez, E., Comput. Mat. Sci. 28, 85 (2003).CrossRefGoogle Scholar
12. Sanz-Serna, J. M., Calvo, M. P., Numerical Hamiltonian Problems, Chapman and Hall, New York, 1995.Google Scholar
13. Bond, S. D., Leimkuhler, B. J., Laird, B. B., J. Comput. Phys. 151, 114 (1999).CrossRefGoogle Scholar
14. Berne, B. J. and Pecora, R., Dynamic Light Scattering: with applications to Chemistry, Biology, and Physics, Dover Publications, Inc. Mineola, New York, 2000.Google Scholar
15. Coluci, V.R., Sato, F., Braga, S. F., Skaf, M. S., Galvão, D. S., J. Chem. Phys. 129, 064506 (2008).CrossRefGoogle Scholar
16. Williams, G., Chem. Soc. Rev. 7, 89 (1978).CrossRefGoogle Scholar
17. Li, Z., Anderson, S. L., J. Phys. Chem. A 107, 1162 (2003); and references therein.CrossRefGoogle Scholar
18. Martin, H. D., Urbanek, T., Pfohler, P., Walsh, R., J. Chem. Soc. Chem. Commun. 964 (1985).CrossRefGoogle Scholar
19. Martin, H. D., Urbanek, T., Walsh, R., J. Am. Chem. Soc. 107, 5532 (1985).CrossRefGoogle Scholar
20. Martin, H. D., Pfohler, P., Urbanek, T., Walsh, R., Chem. Ber. 116, 1415 (1983).CrossRefGoogle Scholar
21. Han, S., Yoon, M., Berber, S., Park, N., Osawa, E., Ihm, J., Tománek, D., Phys. Rev. B 70, 113402 (2004).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Molecular Dynamics Study of the Rotational Dynamics and Polymerization of C60 in C60-Cubane Crystals
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A Molecular Dynamics Study of the Rotational Dynamics and Polymerization of C60 in C60-Cubane Crystals
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A Molecular Dynamics Study of the Rotational Dynamics and Polymerization of C60 in C60-Cubane Crystals
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *