Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-30T06:24:01.827Z Has data issue: false hasContentIssue false

Nanoengineering of Carbon Nanotubes and the Status of its Applications

Published online by Cambridge University Press:  15 March 2011

Yoshikazu Nakayama
Affiliation:
Department of Physics & Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
Seiji Akita
Affiliation:
Department of Physics & Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
Get access

Abstract

We have developed a well-controlled method for manipulating carbon nanotubes. The first crucial process involved is to prepare a nanotube array, named nanotube cartridge. We have found the ac electrophoresis of nanotubes by which nanotubes are aligned at the knife-edge. The nanotubes used were multiwalled and prepared by an arc discharge with a relatively high gas temperature. The second important process is to transfer a nanotube from the nanotube cartridge onto a substrate in a scanning electron microscope. Using this method, we have developed nanotube tips and nanotube tweezers that operate in a scanning probe microscope. The nanotube probes have been applied for observation of biological samples and industrial samples to clarify their advantages. The nanotube tweezers have demonstrated their motion in scanning-electron-microscope and operated to carry nanomaterials in a scanning probe microscope.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S., Nature 354, 147 (1991).Google Scholar
2. Wong, S. S., Joselevich, E., Woolley, A. T., Cheung, C. L., and Lieber, C. M., Nature 394, 52 (1998).Google Scholar
3. Arie, T., Nishijima, H., Akita, S., and Nakayama, Y., J. Vac. Sci. Technol. B 18, 104 (2000).Google Scholar
4. Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T., and Smalley, R. E., Nature 384, 147 (1996).Google Scholar
5. Wong, S. S., Harper, J. D., Lansbury, P. T., and Lieber, C. M., J. Am. Chem. Soc. 120, 603 (1998).Google Scholar
6. Nishijima, H., Kamo, S., Akita, S., Nakayama, Y., Hohmura, K. I., Yoshimura, S. H., and Takeyasu, K., Appl. Phys. Lett. 74, 4061 (1999).Google Scholar
7. Akita, S., Nishijima, H., Nakayama, Y., Tokumasu, F., and Takeyasu, K., J. Phys. D: Appl. Phys. 32, 1044 (1999).Google Scholar
8. Hafner, J. H., Cheung, C. L., and C. M. Lieber: J. Am. Chem. Soc. 121, 9750 (1999).Google Scholar
9. Kim, P. and Lieber, C. M., Science 286, 2148 (1999).Google Scholar
10. Yamamoto, K., Akita, S., and Nakayama, Y., J. Phys. D: Appl. Phys. 31, 34 (1998).Google Scholar
11. Nishijima, H., Akita, S., and Nakayama, Y., Jpn. J. Appl. Phys. 38, 7247 (1999).Google Scholar
12. Nakayama, Y., Nishijima, H., Akita, S., Hohmura, K. I., Yoshimura, S. H., and Takeyasu, K., J. Vac. Sci. Technol. B 18, 661 (2000).Google Scholar
13. Akita, S., Mizooka, S., Takano, Y., Okawa, T., Miyatake, Y., Yamanaka, S., Tsuji, M., and Nosaka, T., Nakayama, Y., Appl. Phys. Lett. 79, 1691 (2001).Google Scholar
14.The Si tips with electric wires used for the nanotube tweezers were fabricated by Seiko Instruments Inc.Google Scholar
15. Akita, S., Nishijima, H., Kishida, T., and Nakayama, Y., Jpn. J. Appl. Phys. 39, 3724 (2000).Google Scholar
16. Akita, S., Nishijima, H., and Nakayama, Y., J. Phys. D: Appl. Phys. 33, 2673 (2000).Google Scholar
17. Uchihashi, T., Choi, N., Tanigawa, M., Ashino, M., Ishikawa, M., Sugawara, Y., Tokumoto, H., Nishijima, H., Akita, S., Nakayama, Y., Yokoyama, K., and Morita, S., Jpn. J. Appl. Phys. 39, L887 (2000).Google Scholar
18. Umemura, K., Komatsu, J., Uchihashi, T., Choi, N., Ikawa, S., Nishinaka, T., Shibata, T., Nakayama, Y., Katsura, S., Mizuno, A., Tokumoto, H., Ishikawa, M., and Kuroda, R., Biochem. Biophys. Res. Commun. 281, 390 (2001).Google Scholar
19. Nagao, E., Nishijima, H., Akita, S., Nakayama, Y., and Dvorak, J. A., J. Electron. Microscopy 49, 453 (2000).Google Scholar
20. Hohmura, K. I., Itokazu, Y., Yoshimura, S. H., Mizuguchi, G., Masamura, Y., Takeyasu, K., Shiomi, Y., Tsurimoto, T., Nishijima, H., Akita, S., and Nakayama, Y., J. Electron. Microscopy 49, 415 (2000).Google Scholar
21. Shiomi, Y., Usukura, J., Masamura, Y., Takeyasu, K., Nakayama, Y., Obuse, C., Yoshikawa, H., and Tsurimoto, T., Proc. National Acad. Sci. USA 97, 14127 (2000).Google Scholar
22. Yasutake, M., Keisoku and Seigyo (in Japanese), 38, 769 (1999).Google Scholar
23. Jarvis, S. P., Uchihashi, T., Ishida, T., Tokumoto, H., and Nakayama, Y., J. Phys. Chem. B 104, 6091 (2000).Google Scholar
24. Takahashi, S., Akita, S., Kishida, K., and Nakayama, Y., Jpn. J. Appl. Phys. 40, 4314 (2001).Google Scholar
25. Okazaki, A., Akita, S., Nishijima, H., and Nakayama, Y., Jpn. J. Appl. Phys. 39, 3744 (2000).Google Scholar
26. Okazaki, A., Kishida, T., Akita, S., Nishijima, H., and Nakayama, Y., Jpn. J. Appl. Phys. 39, 7067 (2000).Google Scholar
27. Shimizu, T., Tokumoto, H., Akita, S., and Nakayama, Y., Surface Science 486, L455 (2001).Google Scholar
28. Arie, T., Yoshida, N., Akita, S., and Nakayama, Y., J. Phys. D: Appl. Phys. 34, L1 (2001)Google Scholar
29. Akita, S., Nishijima, H., Kishida, T., and Nakayama, Y., Jpn. J. Appl. Phys. 39, 7086 (2000).Google Scholar
30. Akita, S. and Nakayama, Y., Jpn. J. Appl. Phys. 40, 4289 (2001).Google Scholar