Published online by Cambridge University Press: 10 February 2011
By using Krätschmer-Huffman synthesis and HPLC separation method we have isolated a series of novel fullerenes and endohedral fullerenes. Various spectroscopic techniques, e.g., MS, NMR, UV-vis-NIR, TEM, X-ray diffraction spectrometry etc., were adopted to characterize the isolated fullerenes. Several fullerenes were revealed to hold novel structures and electronic properties. For examples, C80(D5d ) was isolated and characterized to have an ellipsoidal structure which is in fact one of the shortest SW-nanotubes; The isolation of Sc2@C66 breaks the well-known isolated-pentagon-rule (IPR) for the first time, which shows that the unconventional fullerenes may be dramatically stabilized through encaging metal atoms; Sc2C2@C84 is a novel molecular endohedral fullerene in which the Sc2C2 cluster rotates rapidly along the main C2 axis of C84(D2d ). This fullerene is predicted to be a molecular magnet and may be used as nano-switcher in electronics.