Hostname: page-component-7d684dbfc8-7nm9g Total loading time: 0 Render date: 2023-10-01T19:14:36.960Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Optical Reflectance and Rheed Transients During Mbe Growth on (001) GaAs

Published online by Cambridge University Press:  28 February 2011

D. E. Aspnes
Affiliation:
Bellcore, Red Bank, N.J. 07701–7020
J. P. Harbison
Affiliation:
Bellcore, Red Bank, N.J. 07701–7020
A. A. Studna
Affiliation:
Bellcore, Red Bank, N.J. 07701–7020
L. T. Florez
Affiliation:
Bellcore, Red Bank, N.J. 07701–7020
Get access

Abstract

We compare the dynamic responses of reflection high energy electron diffraction (RHEED) and optical reflectance-difference (RD) signals caused by abrupt changes in incident fluences of Ga and As during MBE growth of GaAs on (001) GaAs. Our results reveal that RHEED and RD originate mainly, although not completely, from structural order and chemical bonding, respectively, and thus provide complementary information for real-time studies of MBE growth. We also measure the wavelength dependence of the RD spectrum and show that it can be described approximately from 2 to 4 eV by a single Lorentzian absorption line centered at 2.4 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arthur, J. R. and LePore, J. J., J. Vac. Sci. Technol. 6, 545 (1969).CrossRefGoogle Scholar
2. Cho, A. Y., Surface Sci. 17 494 (1969).CrossRefGoogle Scholar
3. Neave, J. H., Joyce, B. A., Dobson, P. J., and Norton, N., Appl. Phys. A31, 1 (1983).CrossRefGoogle Scholar
4. Van Hove, J. M., Cohen, P. I., and Lent, C. S., J. Vac. Sci. Technol. A1, 546 (1983).CrossRefGoogle Scholar
5. Sakamoto, T., Funabashi, H., Ohta, K., Nakagawa, T., Kawai, N. J., Kojima, T., and Bando, Y., Superlatt. and Microstruc. 1, 347 (1985).CrossRefGoogle Scholar
6. Madhukar, A., Lee, T. C., Yen, M. Y., Chen, P., Kim, J. Y., Ghaisas, S. V., and Newman, P. G., Appl. Phys. Lett. 46, 1148 (1985).CrossRefGoogle Scholar
7. Chen, P., Madhukar, A., Kim, J. Y., and Lee, T. C., Appl. Phys. Lett. 48, 650 (1986).CrossRefGoogle Scholar
8. Lewis, B. F., Grunthaner, F. J., Madhukar, A., Lee, T. C., and Fernandez, R., J. Vac. Sci. Technol. B 3, 1317 (1985).CrossRefGoogle Scholar
9. Van Hove, J. M., Pukite, P. R., and Cohen, P. I., J. Vac. Sci. Technol. B3 563 (1985).CrossRefGoogle Scholar
10. Aspnes, D. E. and Studna, A. A., Phys. Rev. Lett. 54, 1956 (1985).CrossRefGoogle Scholar
11. Aspnes, D. E., J. Vac. Sci. Technol. B3, 1498 (1985).CrossRefGoogle Scholar
12. Aspnes, D. E. and Studna, A. A., Phys. Rev. B 27 985 (1983).CrossRefGoogle Scholar
13. Aspnes, D. E. and Studna, A. A., Rev. Sci. Instrum. 49, 291 (1978).CrossRefGoogle Scholar
14. Vina, L. and Cardona, M., Phys. Rev. B 30, 1979 (1984).CrossRefGoogle Scholar
15. Farrell, H. H., J. Vac. Sci. Technol. (in press.)Google Scholar
16. Larsen, P. K., van der Veen, J. F., Mazur, A., Pollmann, J., Neave, J. H., and Joyce, B. A., Phys. Rev. B 26, 3222 (1982).CrossRefGoogle Scholar