Hostname: page-component-788cddb947-jbjwg Total loading time: 0 Render date: 2024-10-08T15:35:35.605Z Has data issue: false hasContentIssue false

Optimizing Pentacene Growth in Low-Voltage Organic Thin-Film Transistors Prepared by Dry Fabrication Techniques

Published online by Cambridge University Press:  10 December 2012

S. Gupta
Affiliation:
Department of Electronic and Electrical Engineering
K. C. Chinnam
Affiliation:
Department of Electronic and Electrical Engineering
M. Zelzer
Affiliation:
Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom.
R. Ulijn
Affiliation:
Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom.
H. Gleskova
Affiliation:
Department of Electronic and Electrical Engineering
Get access

Abstract

We have studied the effect of pentacene purity and evaporation rate on low-voltage organic thin-film transistors (OTFTs) prepared solely by dry fabrication techniques. The maximum field-effect mobility of 0.07 cm2/Vs was achieved for the highest pentacene evaporation rate of 0.32 Å/s and four-time purified pentacene. Four-time purified pentacene also led to the lowest threshold voltage of -1.1 V and inverse subthreshold slope of ∼100 mV/decade. In addition, pentacene surface was imaged using atomic force microscopy, and the transistor channel and contact resistances for various pentacene evaporation rates were extracted and compared to field-effect mobilities.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Vaidya, V., Soggs, S., Kim, J., Haldi, A., Haddock, J. N., Kippelen, B., and Wilson, D. M., IEEE Transactions on Circuit and Systems 55 (5), 11771184 (2008).CrossRefGoogle Scholar
Dey, A., Avendanno, A., Venugopal, S., Allee, D. R., Quevedo, M., and Gnade, B., IEEE Electron Device Letters 32 (5), 650652 (2011).CrossRefGoogle Scholar
Kim, J. B., Fuentes-Hernandez, C., Hwang, D. K., Potscavage, W. J. Jr., Cheun, H., and Kippelen, B., Organic Electronics 12 (1), 4550 (2011).CrossRefGoogle Scholar
Jedaa, A., Burkhardt, M., Zschieschang, U., Klauk, H., Habich, D., Schmid, G., and Halik, M., Organic Electronics 10 (8), 14421447 (2009).CrossRefGoogle Scholar
Klauk, H., Zschieschang, U., Pflaum, J., and Halik, M., Nature 445 (7129), 745-748 (2007).CrossRefGoogle Scholar
Ma, H., Acton, O., Ting, G., Ka, J. W., Yip, H., Tucker, N., Schofield, R., and Jen, A. K. –Y., Applied Physics Letters 92 (11), 113303 (2008).CrossRefGoogle Scholar
Fukuda, K., Hamamoto, T., Yokota, T., Sekitani, T., Zschieschang, U., Klauk, H., and Someya, T., Applied Physics Letters 95 (20), 203301 (2009).CrossRefGoogle Scholar
Jurchescu, O. D., Baas, J., and Palstra, T. T. M., Applied Physics Letters 84 (16), 30613063 (2004).CrossRefGoogle Scholar
Knipp, D., Street, R. A., Völkel, A., and Ho, J., Journal of Applied Physics 93 (1), 347355 (2003).CrossRefGoogle Scholar
Shtein, M., Mapel, J., Benziger, J. B., and Forrest, S. R., Applied Physics Letters 81 (2), 268270 (2002).CrossRefGoogle Scholar
Klauk, H., Halik, M., Zschieschang, U., Schmid, G., Radik, W., and Weber, W., Journal of Applied Physics 92 (9), 52595263 (2002).CrossRefGoogle Scholar
Mun, S., Choi, J.-M., Lee, K. H., and Im, S., Applied Physics Letters 93 (23), 233301 (2008).CrossRefGoogle Scholar
Chinnam, K. C., Gupta, S., and Gleskova, H., Journal of Non-Crystalline Solids (DOI: 10.1016/j.jnoncrysol.2012.01.016) (in press) CrossRefGoogle Scholar
Klauk, H., Zschieschang, U., and Halik, M., Journal of Applied Physics 102 (7), 074514 (2007).CrossRefGoogle Scholar
Xu, Y., Gwoziecki, R., Chartier, I., Coppard, R., Balestra, F., and Ghibaudo, G., Applied Physics Letters 97 (6), 063302 (2010).CrossRefGoogle Scholar
Knipp, D., Street, R. A., and Völkel, A. R., Applied Physics Letters 82 (22), 39073909 (2003).CrossRefGoogle Scholar
DiBenedetto, S. A., Frattarelli, D., Ratner, M. A., Facchetti, A., and Marks, T. J., Journal of the American Chemical Society 130 (24), 7528–29 (2008)CrossRefGoogle Scholar
Halik, M., Klauk, H., Zschieschang, U., Schmid, G., Dehm, C., Schütz, M., Maisch, S., Effenberger, F., Brunnbauer, M., and Stellacci, F., Nature 431 (7011), 963-966 (2004).CrossRefGoogle Scholar