Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-fv4mn Total loading time: 0.311 Render date: 2022-06-24T21:55:11.315Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Pioneering Application of Corona Charge-Kelvin Probe Metrology to Noncontact Characterization of In0.53 Ga0.47 As/Al2O3/HfO2 Stack

Published online by Cambridge University Press:  24 July 2014

Alexandre Savtchouk
Affiliation:
Semilab SDI, LLC, 10770 N. 46th St., Suite E700, Tampa, FL 33617, U.S.A.
John D’Amico
Affiliation:
Semilab SDI, LLC, 10770 N. 46th St., Suite E700, Tampa, FL 33617, U.S.A.
Marshall Wilson
Affiliation:
Semilab SDI, LLC, 10770 N. 46th St., Suite E700, Tampa, FL 33617, U.S.A.
Jacek Lagowski
Affiliation:
Semilab SDI, LLC, 10770 N. 46th St., Suite E700, Tampa, FL 33617, U.S.A.
Wei-E Wang
Affiliation:
SEMATECH, 257 Fuller Rd #2200, Albany, NY 12203, U.S.A.
Taewoo Kim
Affiliation:
SEMATECH, 257 Fuller Rd #2200, Albany, NY 12203, U.S.A.
Gennadi Bersuker
Affiliation:
SEMATECH, 257 Fuller Rd #2200, Albany, NY 12203, U.S.A.
Dmitry Veksler
Affiliation:
SEMATECH, 257 Fuller Rd #2200, Albany, NY 12203, U.S.A.
Donghyi Koh
Affiliation:
SEMATECH, 257 Fuller Rd #2200, Albany, NY 12203, U.S.A.
Get access

Abstract

We report the first successful application of corona charging noncontact C-V and I-V metrology to interface and dielectric characterization of high-k/III-V structures. The metrology, which has been commonly used in Si IC manufacturing, uses incremental corona charge dosing, ΔQC, on the dielectric surface, and the measurement of surface voltage response, ΔVS, using a Kelvin-probe. Its application to In0.53Ga0.47As with a high-k stack required modifications related to the effects of dielectric trap induced voltage transients. The developed Corona Charge-Kelvin Probe Metrology adopted strictly differential measurements using ΔQC and ΔV, and corresponding differential capacitance rather than measurements based on total global charge, Q, and voltage, V, values.

Electrical characterization data including interface trap density, electrical oxide thickness, and dielectric leakage are presented for a sample containing an In0.53 Ga0.47 As channel overlaid with a bilayer (2nm Al2O3/5nm HfO2) dielectric stack that is considered to be very promising for application in performance NFETs with high-mobility channels.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

International Technology Roadmap for Semiconductors; “Front End Processes: ITRS 2012 Winter Public Conference”, Taiwan (2012).
del Alamo, J. A., Antoniadis, D., Gui, A., Kim, D. H., Kim, T. W., Lin, J., Lu, W., Vardi, A., and Zhao, X., 2013 IEEE International Devices Meeting, Washington, DC, 2.1.1-2.1.4 (2013).Google Scholar
Huang, J., Goel, N., Zhao, H., Kang, C. Y., Min, K. S., Bersuker, G., Oktyabrsky, S., Gaspe, C. K., Santos, M. B., Majhi, P., Kirsch, P.D., Tseng, H. H., Lee, J. C., Jammy, R., 2009 IEEE International Electron Devices Meeting (IEDM), 7–9 Dec. (2009).
Peide, D. Ye., J. of Vac. Sc. & Tech. A, 26(4), 697704 (2008).
Oktyabrsky, S., and Ye, Peide D., eds. Fundamentals of III-V Semiconductor MOSFETs. Springer, 2010.CrossRefGoogle Scholar
Chau, R., Datta, S., and Majumdar, A., In Compound Semiconductor Integrated Circuit Symposium, CSIC'05. IEEE, 4, (2005).Google Scholar
Deora, S.. Bersuker, G., Loh, W. Y., Veksler, D., Matthews, K., Kim, T. W., Lee, R. T. P., Hill, R. J. W., Kim, D. H., Wang, W. E., Hobbs, C., and Kirsch, P. D., Trans. Dev. Mat. Reliability, 14, 300 (2014).CrossRef
Veksler, D., Nagaiah, P., Chidambaram, T., Cammarere, R., Tokranov, V., Yakimov, M., Chen, Y.-T., Huang, J., Goel, N., Oh, J., Bersuker, G., Hobbs, C., Kirsch, P. D. and Oktyabrsky, S., J. of Applied Physics, 112(5), 054504–054504 (2012).CrossRef
Sereni, G., Morassi, L., Vandelli, L., Larcher, L., Veksler, D. and Bersuker, G., “A new method for extracting interface state and border trap densities in high-k/III-V MOSFETsIEEE Int. Reliab. Phys. Symp. (IRPS), 2014, (in press).Google Scholar
Veksler, D., Bersuker, G., Madan, H., Morassi, L., Verzellesi, G., Wang, Wei-E, Kirsch, P.D.Extraction of interface state density in oxide/III-V gate stacks”, (2014), (unpublished).
Edelman, P., Hoff, A.M., Jastrzebski, L., Lagowski, J., SPIE, 2337, 154164 (1994)
Wilson, M., Lagowski, J., Savtchouk, A., Jastrzebski, L., and D’Amico, J., in Gate Dielectric Integrity: Material, Process, and Tool Qualification, Gupta, D.C. and Brown, G.A., Editors, ASTM STP1382, pp. 7490, American Society for Testing and Materials, West Conshohocken, PA (1999).Google Scholar
Sze, S. M., Physics of Semiconductor Devices, 2nd ed., pp. 362369, John Wiley and Sons, Inc., New York, New York (1981).Google Scholar
Wilson, M., Marinskiy, D., Byelyayev, A., D’Amico, J., Findlay, A., Jastrzebski, L., and Lagowski, J., ECS Transactions, 3(3), 324 (2006).CrossRef
Veksler, D., Bersuker, G., Morassi, L., Yum, J. H., Verzellesi, G., Wang, W. E., and Kirsch, P. D., “Extraction of interfacial state density in high-k/III-V gate stacks: problems and solutions”. IEEE Nanotechnology Materials and Devices Conference, Oct. 7-9, 2013, National Cheng Kung University, Tainan, Taiwan.Google Scholar
Yuan, Y., Yu, B., Ahn, J., McIntyre, P. C., Asbeck, P. M., Rodwell, M. J. W., and Taur, Y., IEEE Trans. on El. Dev, 59(8), 21002106 (2012).CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Pioneering Application of Corona Charge-Kelvin Probe Metrology to Noncontact Characterization of In0.53 Ga0.47 As/Al2O3/HfO2 Stack
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Pioneering Application of Corona Charge-Kelvin Probe Metrology to Noncontact Characterization of In0.53 Ga0.47 As/Al2O3/HfO2 Stack
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Pioneering Application of Corona Charge-Kelvin Probe Metrology to Noncontact Characterization of In0.53 Ga0.47 As/Al2O3/HfO2 Stack
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *