Published online by Cambridge University Press: 25 February 2011
The effect of 1 MeV N+ irradiation on the microstructure of Fe and Ti specimens was investigated. The Fe and Ti specimens were implanted such that the N peak concentration (30 at.% in Fe, 45 at.% in Ti), was below the concentration of N in ε-Fe2N and δ-TiN, respectively. X-ray diffraction phase analysis showed that ε-Fe2N and δ-TiN had formed. X-ray diffraction stress analysis indicated that the residual stress in the Fe and Ti matrices was negligible after implantation. This suggests that the volume misfit due to nitride formation had been accommodated by plastic deformation. Indeed, surface profilometry of implanted Fe showed that a volume increase of the specimen had occurred which was compatible with the formation of unstrained nitride .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.