Hostname: page-component-54dcc4c588-xh45t Total loading time: 0 Render date: 2025-09-28T04:22:11.397Z Has data issue: false hasContentIssue false

Salt-Occluded Zeolite Waste Forms: Crystal Structures andTransformability

Published online by Cambridge University Press:  03 September 2012

J. W. Richardson Jr.*
Affiliation:
Intense Pulsed Neutron Source Division, Argonne National Laboratory, Argonne, IL 60439, USA
Get access

Abstract

Neutron diffraction studies of salt-occluded zeolite and zeolite/glasscomposite samples, simulating nuclear waste forms loaded with fissionproducts, have revealed complex structures, with cations assuming the dualroles of charge compensation and occlusion (cluster formation). Theseclusters roughly fill the 6–8 Å diameter pores of the zeolites. Samples areprepared by equilibrating zeolite-A with complex molten Li, K, Cs, Sr, Ba, Ychloride salts, with compositions representative of anticipated wastesystems. Samples prepared using zeolite 4A (which contains exclusivelysodium cations) as starting material are observed to transform to sodalite,a denser alumi-nosilicate framework structure, while those prepared usingzeolite 5A (sodium and calcium ions) more readily retain the zeolite-Astructure. Because the sodalite framework pores are much smaller than thoseof zeolite-A, clusters are smaller and more rigorously confined, with acorrespondingly lower capacity for waste containment. Details of thesodalite structures resulting from transformation of zeolite-A depend uponthe precise composition of the original mixture. The enhanced resistance ofsalt-occluded zeolites prepared from zeolite 5A to sodalite transformationis thought to be related to differences in the complex chloride clusterspresent in these zeolite mixtures. Data relating processing conditions toresulting zeolite composition and structure can be used in the selection ofprocessing parameters which lead to optimal waste forms.

Information

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

1. Adams, J. M. and Haselden, D. A., J. Solid State Chem. 47, 123 (1983).Google Scholar
2. Adams, J. M. and Haselden, D. A., J. Solid State Chem. 51, 83 (1984).Google Scholar
3. Richardson, J. W. Jr., Smith, J. V. and Pluth, J. J., J. Phys. Chem. 93, 8212 (1989).Google Scholar
4. Richardson, J. W. Jr. and Vogt, E. T. C., Zeolites 12, 13 (1992).Google Scholar
5. Richardson, J.W. Jr., Lewis, M. A. and McCart, B. R., Proc. 10th Int. Zeol. Conf. 741 (1994).Google Scholar
6. Lewis, M. A., Smith, L. J. and Fischer, D. F., Am. Ceram. Soc. 11, 2826 (1993).Google Scholar
7. Lewis, M. A., Fischer, D. F. and Murphy, C. D., Mat. Reser. Soc. Proc. 333, 277 (1994).Google Scholar
8. Lewis, M. A., Fischer, D. F. and Murphy, C. D. in Environmental and Waste Management Issues in the Ceramic Industry II, 277 (1994).Google Scholar
9. Jorgensen, J. D., Faber, J. Jr., Carpenter, J. M., Crawford, R. K., Hauman, J. R., Hitter-man, R. L., Kleb, R., Ostrowski, G.E., Rotella, F.J. and Worlton, T.G., J. Appl. Cryst. 21, 321 (1989).Google Scholar
10. Rietveld, H. M., J. Appl. Cryst. 2, 65 (1969).Google Scholar
11. Larson, A. C. and Von Dreele, R. B., GSAS, General Structure Analysis System. Los Alamos National Laboratory Report LAUR86–748 (1986).Google Scholar
12. Reed, T. B. and Breck, D. W., J. Am. Chem. Soc. 78 (1956) 5972.Google Scholar
13. Gramlich, V. and Meier, W. M., Z. Krist. 133, 134 (1971).Google Scholar
14. Pauling, L., Z. Krist. 74, 213 (1930).Google Scholar
15. Pluth, J. J. and Smith, J. V., J. Am. Chem. Soc. 102, 4704 (1980).Google Scholar
16. Pluth, J. J. and Smith, J. V., J. Phys. Chem. 83, 741 (1979).Google Scholar
17. Pluth, J. J. and Smith, J. V., J. Am. Chem. Soc. 105, 2621 (1983).Google Scholar
18. Pluth, J. J. and Smith, J. V., J. Am. Chem. Soc. 104, 6977 (1982).Google Scholar
19. Heo, N. H. and Seff, K., J. Am. Chem. Soc. 109, 7986 (1987).Google Scholar
20. Newsam, J. M., Jarman, R. H. and Jacobson, A. J., J. Solid State Chem. 58, 325 (1985).Google Scholar