Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-30T02:13:35.267Z Has data issue: false hasContentIssue false

Silicon Oxynitride Membrane for Chemical Sensor Application

Published online by Cambridge University Press:  10 February 2011

S. Astle
Affiliation:
LAAS - CNRS, 7 Av. du Colonel Roche, 31077 Toulouse cedex 4, France, astie@laas.fr MOTOROLA S.A., Av. du General Eisenhower, 31023 Toulouse cedex, France
E. Scheid
Affiliation:
LAAS - CNRS, 7 Av. du Colonel Roche, 31077 Toulouse cedex 4, France, astie@laas.fr
A.M. Gue
Affiliation:
LAAS - CNRS, 7 Av. du Colonel Roche, 31077 Toulouse cedex 4, France, astie@laas.fr
J.P. Guillemet
Affiliation:
MOTOROLA S.A., Av. du General Eisenhower, 31023 Toulouse cedex, France
L. Lescouzeres
Affiliation:
MOTOROLA S.A., Av. du General Eisenhower, 31023 Toulouse cedex, France
Get access

Abstract

Tin oxide gas sensor can detect various gases by using the conductivity changes due to adsorption and desorption processes of gaseous molecules on its surface. The reduction of the power consumption especially for batteries back-up operation, is one of the challenge for SnO2 gas sensors. We propose a new solution using a silicon oxynitride membrane (SiOxNy) to reach this objective. Thin films of SiOxNy with different compositions have been studied. Their composition, residual stress, Young modulus and mechanical strength have been evaluated. As a result, we propose an optimized silicon oxynitride membrane with a low residual stress (-50 MPa), giving above 95% fabrication yield and low power consumption (65 mW / 450°C). A new sensors generation has been successfully fabricated and its mechanical strength and thermal performances have been evaluated. Moreover, an equation is derived, which describes the variation of the Young modulus as a function of the silicon oxynitride composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yun, D.H. and al., Goldstar Co.Ltd. Seoul Rep. of Korea, U. S. Patent N° 5545300, (1996).Google Scholar
2 Lee, D. D., Chung, W. Y., Choi, M. S. and Baek, J. M., Sensors and Actuators B 33, 147 (1996).Google Scholar
3 Dori, L., Maccagnani, P., Cardinali, G.C., Fiorini, M., Sayago, I., Guerri, S., Rizzoli, R. and Sberveglieri, G. (EUROSENSORS XI 1C2-2, Warsaw Poland, Sept 21-24 1997), p. 289292.Google Scholar
4 Endres, H.E and al., Sensors and Actuators B 35–36, 353 (1996).Google Scholar
5 Götz, A., Gràcia, I., Cané, C. and Lora-Tamayo, E., J. Micromech. Microeng. 7, 247 (1997).Google Scholar
6 Rossi, C., Scheid, E., Esteve, D., Sensors and Actuators A 63, 183 (1997).Google Scholar
7 Astié, S., Gué, A.M., Scheid, E., Lescouzères, L. and Cassagnes, A., Sensors and Actuators A to be published (1998).Google Scholar
8 Nie, A. G. Van, Solid State Tech., 81 (1980).Google Scholar
9 Oliver, W.C., Pharr, G.M., J. Mater. Res. 7, 1564 (1992).Google Scholar
10 Dehan, E., Temple-Boyer, P., Henda, R., Pedroviejo, J.J., Scheid, E., Thin Solid Films 266, 14 (1995).Google Scholar
11 Temple-Boyer, P., to be published (1998).Google Scholar
12 Jou, J.H. and Hsu, L., J. Appl. Phys. 69, 1384 (1991).Google Scholar