Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-23T05:59:50.060Z Has data issue: false hasContentIssue false

Simulations of Multi-atom Vacancies in Diamond

Published online by Cambridge University Press:  26 February 2011

Istvan Laszlo
Affiliation:, Budapest Technical University, Institute of Physics, Budapest H-1111, Hungary
Miklos Kertesz
Affiliation:, Georgetown University, Chemistry Department, 37th and O Streets, NW, Was hington, DC, 20057-1227, United States
Yury Gogotsi
Affiliation:, Drexel University, Department of Mateirals Science and Engineering, Philadelphia, PA, 19104, United States
Get access


Multi-atom vacancies and pores in diamond-structured carbon phases play an important role in carbon sieves and carbon based storage. The size and shape of pores have a profound effect on the energetics of adsorptive storage. We are modeling large numbers of vacancy configurations with a combination of ab initio density functional theory (DFT), tight binding DFT and simpler methods based on Brenner-potentials and modified Brenner potentials. The more accurate calculations serve as the basis of the parametrization which is then used in lattice Monte Carlo simulations on more complex vacancies. The results will be put in the context of SiC-derived porous carbon materials with the purpose to explore basic questions of energetics in porous carbons.

Research Article
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1 (a) Gogotsi, Y., Dash, R. K., Yushin, G., Yildirim, T., Laudisio, G., Fischer, J. E., J. Am. Chem. Soc. 127, 16006 (2005). (b) K. Iakoubovskii, A. Stesmans, Phys. Stat. Sol. (a) 201, 2509 (2004).Google Scholar
2 (a) Bhatia, S.K., Myers, A.L., Langmuir, 22, 1688 (2006). (b) J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Science, 313, 1760 (2006).Google Scholar
3 Yushin, G.N., Osswald, S., Padalko, V.I., Bogatyreva, G.P., Gogotsi, Y., Diamond and Related Materials, 14,1721 (2005).Google Scholar
4 (a) Hastings, J. L., Estreicher, S. K., Fedders, P. A., Phys. Rev. B56, 10215 (1997). (b) D. J. Chadi and K. J. Chang, Phys. Rev. B38, 1523 (1998).Google Scholar
5 Bongiorno, A., Colombo, L., Diaz De La Rubia, T., Europhys. Lett. 43, 695 (1998).Google Scholar
6 Staab, T.E.M., Sieck, A., Haugk, M., Puska, M.J., Frauenheim, Th., Leipner, H. S., Phys. Rev. B65, 115210 (2002).Google Scholar
7 Brenner, D. W., Phys. Rev. B42, 9458 (1990).Google Scholar
8 Porezag, D., Frauenheim, T., Köhler, T., Seifert, G., Kaschner, R., Phys. Rev. B51, 12947 (1995).Google Scholar