Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-30T05:56:56.463Z Has data issue: false hasContentIssue false

A Statistical Approach to the Effect of Sol-Gel Process Variables on the Physical Properties of Polymer [PLLA]-Silica Hybrid Materials for Use as Biomaterials

Published online by Cambridge University Press:  01 February 2011

Carole C. Perry
Affiliation:
Department of Physics and Chemistry, Nottingham Trent University, Nottingham NG11 8FU, UK.
David Eglin
Affiliation:
Department of Physics and Chemistry, Nottingham Trent University, Nottingham NG11 8FU, UK.
Saad A.M. Ali
Affiliation:
Smith & Nephew Group Research Centre, York Science Park, Heslington, York YO10-5DF, UK.
Sandra Downes
Affiliation:
Smith & Nephew Group Research Centre, York Science Park, Heslington, York YO10-5DF, UK.
Get access

Abstract

Hybrid poly(L-lactic acid)-silica materials for potential use in orthopaedic applications have been prepared by a sol-gel method using an experimental design approach to investigate the effect of synthesis variables separately and together on the physical form of the organic polymer. The five factors investigated were the molar ratios of tetraethyl orthosilicate (TEOS)/Poly(Llactic acid) (PLLA), Toluene/PLLA, EtOH/TEOS, Water/TEOS and HCl (catalyst)/TEOS. All other synthesis conditions were kept constant. X-Ray powder diffraction (Statton's graphical method) and differential scanning calorimetry were used to assess the extent of polymer crystallinity in the hybrid materials. In accordance with other studies, increasing the molar ratio of TEOS/PLLA lead to increasing incorporation of the organic polymer into the silica network. Increase of the toluene/PLLA molar ratio lead to an increase in the crystallinity of the polymer phase. As our studies investigated the effect of synthesis variables simultaneously it was possible to identify, for the first time, that interactions between specific reactants are important in the development of the two structural components of this hybrid system. The most important of these was the TEOS/PLLA*H2O/TEOS interaction that may indicate that silica species from hydrolysed TEOS interact with the PLLA phase possibly via hydrogen bonding and leads to the lowering of the crystalline order of the polymer The results from this study give useful information on the ability of the organic polymer and the silica phase to form interpenetrating networks, an important requirement for the generation of a potential hybrid polyester-silica biomaterial for orthopaedic applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Domb, A. J. Kost, J. Wiseman, D. M.Handbook of Biodegradable Polymers”, (Harwood Academic, 1997).Google Scholar
2. Andriano, K. P. Pohjonen, T. Tormala, P. Journal of Applied Biomaterials 5, 133140 (1994).Google Scholar
3. Schwach, G. Vert, M. International Journal of Biological Macromolecules 25, 283291 (1999).Google Scholar
4. Chirila, T. V. Rakoczy, P. E. Garrett, K. L. Lou, X. Constable, I. J. Biomaterials 23, 321342 (2002).Google Scholar
5. Vert, M. Schwach, G. Engel, R. Coudane, J. Journal of Controlled Release 53, 8592 (1998).Google Scholar
6. Leenslag, J. W. Pennings, A. J. Bos, R. R. M., Rozema, F. R. Boering, G. Biomaterials 8, 7073 (1987).Google Scholar
7. Ramakrishna, S. Mayer, J. Wintermantel, E. Leong, K. W. Composites Science and Technology 61, 11891224 (2001).Google Scholar
8. Middleton, J. C. Tipton, A. J. Biomaterials 21, 23352346 (2000).Google Scholar
9. Dell'Erba, R., Groeninckx, G. Maglio, G. Malinconico, M. Migliozzi, A. Polymer 42, 78317840 (2001).Google Scholar
10. Gilding, D. K. Reed, A. M. Polymer 20, 14591464 (1979).Google Scholar
11. Moukwa, M. JOM 49, 4650 (1997).Google Scholar
12. Ignjatovic, N. Tomic, S. Dakic, M. Miljkovic, M. Plavsic, M. Uskokovic, D. Biomaterials 20, 809816 (1999).Google Scholar
13. Kasuga, T. Ozaki, S. Hayakawa, T. Nogami, M. Abe, Y. Journal of Materials Science Letters 18, 20212023 (1999).Google Scholar
14. Schliephake, H. Kage, T. Journal of Biomedical Materials Research 56, 128136 (2001).Google Scholar
15. Tian, D. Dubois, Ph., Jerome, R. Journal of Polymer Science Part A: Polymer Chemistry 35, 22952309 (1997).Google Scholar
16. Tian, D. Dubois, P. Grandfils, C. Jerome, R. Viville, P. Lazzaroni, R. Bredas, J. L. Leprince, P., Chemistry of Materials 9(4), 871874 (1997).Google Scholar
17. Pereira, M. M. Hench, L. L. Journal of Sol-Gel Science and Technology 7, 5968 (1996).Google Scholar
18. Jiang, S. Ji, X. An, L. Jiang, B. Polymer 42, 39013907 (2001).Google Scholar
19. Tian, D. Blacher, S. Dubois, Ph., Jerome, R. Polymer 39, 855 (1998).Google Scholar
20. Tian, D. Blacher, S. Jerome, R. Polymer 40, 951957 (1999).Google Scholar
21. Huang, H. H. Wilkes, G. L. Polymer Bulletin 18, 455462 (1987).Google Scholar
22. Eglin, D. Perry, C. C. Ali, S. A. M., Submitted to Polymer Google Scholar
23. Ahola, M. Rich, J. Kortesuo, P. Kiesvaara, J. Seppala, J. Yli-Urpo, A., International Journal of Pharmaceutics 181, 181191 (1999).Google Scholar
24. Cox, D. R. Reid, N.The Theory of the Design of Experiments”, (Chapman & Hall, 2000).Google Scholar
25. Oye, G. Sjoblom, J. and Stocker, M. Microporous and Mesoporous Materials 34, 291299 (2000).Google Scholar
26. Rueda, N. Bacaud, R. Lanteri, P. and Vrinat, M. Applied Catalysis A: General 215, 8189 (2001).Google Scholar
27. Christensen, R.Analysis of variance design & regression. Applied statistical method.”, (Chapman and Hall, 1996).Google Scholar
28. Aubonnet, S. Thesis Nottingham Trent University (1999).Google Scholar
29. Klug, H. P. Alexander, L. E. in “X-ray Diffraction Procedures for polycrystalline and amorphous materials”, (John Wiley and Sons, 1952).Google Scholar
30. Statton, W. O. Journal of Polymer Science: Part C 18, 3350 (1967).Google Scholar
31. Statton, W. O. Journal of Applied Polymer Science 7, 803815 (1963).Google Scholar
32. Hatakeyama, T. Quinn, F. X.Thermal Analysis: Fundamentals and Applications to Polymer Science”, 2nd ed. (John Wiley & Sons, 1999).Google Scholar
33. Brizzolara, D. Cantow, H. J. Diederichs, K. Keller, E. Domb, A. J. Macromolecules 29, 191–19 (1996).Google Scholar