Hostname: page-component-76dd75c94c-28gj6 Total loading time: 0 Render date: 2024-04-30T09:12:25.079Z Has data issue: false hasContentIssue false

Structural and Magnetic Properties of Zn1-xCoxO Nanoparticles Prepared by a Simple Sol-Gel Method at Low Temperature

Published online by Cambridge University Press:  31 January 2011

Segundo R. Jáuregui-Rosas
Affiliation:
segundorj@yahoo.es, Universidad Nacional de Trujillo, Lab. Fisica de Materiales, Dpto. Fisica, Trujillo, Peru
Oscar Perales-Perez
Affiliation:
operalesperez@yahoo.com, University of Puerto Rico, Department of Engineering Science and Materials, Mayaguez, Puerto Rico
S. Urcia-Romero
Affiliation:
silvana.urcia@uprm.edu, University of Puerto Rico, Dartment of Physics, Mayaguez, Puerto Rico
M. Asmat-Uceda
Affiliation:
yomartiniux@gmail.com, University of Puerto Rico, Department of Physics, Mayaguez, Puerto Rico
E. Quezada-Castillo
Affiliation:
elvarq@yahoo.es, Universidad Nacional de Trujillo, Lab. Fisica de Materiales, Dpto. Fisica, Trujillo, Peru
Get access

Abstract

Pure and Zn1-xCoxO nanoparticles have been synthesized by a simple sol-gel method at low temperature where neither a chelating agent nor subsequent annealing was required. The effect of Cobalt atomic fraction, ‘x’ ≤ 0.0625, on the structural and magnetic properties of the doped ZnO powders was evaluated. X-ray diffraction and Fourier-transform infrared spectroscopy analyses evidenced the exclusive formation of the ZnO-wurtzite structure; no isolated Co-phases were detected. The linear dependence of cell parameters a and c with ‘x’, suggested the actual replacement of Zn by Co ions in the oxide lattice. Micro Raman spectroscopy measurements showed a band centered at 534cm-1, which can be assigned to a local vibrational mode related to Co species, in addition to the normal modes associated with wurtzite. The intensity and broadening of this band at 534 cm-1 were enhanced by increasing ‘x’. In turn, the other bands corresponding to A1 (E2, E1) and E2High modes were red shifted at higher Co contents. Room-temperature magnetization measurements revealed the paramagnetic behavior of the Co-doped ZnO nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Janotti, A. and Walle, Ch. G. Van de, Rep. Prog. Phys. 72 (2009) 126501 10.1088/0034-4885/72/12/126501Google Scholar
[2] Dietl, T., et al., Science 287 (2000) 10191022 10.1126/science.287.5455.1019Google Scholar
[3] Sato, K. and Katayama-Yoshida, H., Jpn. J. Appl. Phys. Part 2, 39 (2000) L555–L55810.1143/JJAP.39.L555Google Scholar
[4] Jáuregui-Rosas, S., et al., in Functional Metal-Oxide Nanostructures, edited by Wu, J., Han, W., Janotti, A., Kim, H.-C. (Mater. Res. Soc. Symp. Proc. Volume 1174, Warrendale, PA, 2009), p. 1174–V09Google Scholar
[5] Martinez, B., et al., Phys. Rev. B 72 (2005) 165202 10.1103/PhysRevB.72.165202Google Scholar
[6] Deka, S., et al., Chem. Mater. 16 (2004) 11681169 10.1021/cm035041jGoogle Scholar
[7] Rao, C. N. R. and Deepak, F. L., J. Mater. Chem. 15 (2005), 573578 10.1039/b412993hGoogle Scholar
[8] Qiu, X., et al., Nanotechnology 19 (2008) 215703 10.1088/0957-4484/19/21/215703Google Scholar
[9] Yang, J.H., et al., J. Alloys Comp. 473 (2009) 543545 10.1016/j.jallcom.2008.06.030Google Scholar
[10] Samanta, K., et al., Phys. Rev. B 73 (2006) 245213 10.1103/PhysRevB.73.245213Google Scholar
[11] Cong, C.J., et al., Mater. Chem. Phys. 113 (2009) 435440 10.1016/j.matchemphys.2008.06.062Google Scholar
[12] Boubekri, R., et al., Chem. Mater. 21 (2009) 843855 10.1021/cm802605uGoogle Scholar
[13] Zhang, Y.B., et al., Phys. Rev. B 73 (2006) 172404 10.1103/PhysRevB.73.172404Google Scholar
[14] Duan, L.B., et al., Solid State Commun. 145 (2008) 525528 10.1016/j.ssc.2008.01.014Google Scholar
[15] Shannon, R.D., Acta Cryst. A 32 (1976) 751767 10.1107/S0567739476001551Google Scholar
[16] Tang, Ch.-W., et al., Thermochim. Acta 473 (2008) 6873 10.1016/j.tca.2008.04.015Google Scholar
[17] Wang, X., et al., Adv. Mater. 18 (2006) 24762480 10.1002/adma.200600396Google Scholar
[18] Cuscó, Ramon, et al., Phys. Rev. B 75 (2007) 165202 10.1103/PhysRevB.75.165202Google Scholar
[19] Sharma, P.K. et al., J. Magn. Magn. Mater. 321 (2009) 25872591 10.1016/j.jmmm.2009.03.043Google Scholar
[20] Spaldin, N.A., Phys. Rev. B 69 (2004) 125201 10.1103/PhysRevB.69.125201Google Scholar