Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-10-06T04:03:30.724Z Has data issue: false hasContentIssue false

Structural Investigations of (GaIn)(NAs)/GaAs Multi-Quantum-Wells by Transmission Electron Microscopy

Published online by Cambridge University Press:  10 February 2011

K. Volz
Affiliation:
Materials Science Department, Darmstadt University of Technology, 64287 Darmstadt, Germany, Electronic mail: volz@mailer.uni-marburg.de
A. Hasse
Affiliation:
Materials Science Department, Darmstadt University of Technology, 64287 Darmstadt, Germany
A.K. Schaper
Affiliation:
Materials Science Department, Darmstadt University of Technology, 64287 Darmstadt, Germany
T.E. Weiric
Affiliation:
Materials Science Center, Philipps-University, 35032 Marburg, Germany
F. Höhnsdorf
Affiliation:
Materials Science Department, Darmstadt University of Technology, 64287 Darmstadt, Germany
J. Koch
Affiliation:
Materials Science Department, Darmstadt University of Technology, 64287 Darmstadt, Germany
W. Stolz
Affiliation:
Materials Science Department, Darmstadt University of Technology, 64287 Darmstadt, Germany
Get access

Abstract

The structure of compressively strained (GaIn)(NAs)/GaAs multi-quantum wells (MQWs) grown by MOVPE is investigated using TEM. The quaternary, metastable material exhibits a high structural perfection if a N concentration of 4% is not exceeded. Phase separation or clustering effects are not observed, and the In is dispersed homogeneously throughout the quantum wells. The interface roughness of the quantum wells to the GaAs barriers is in the order of several monolayers. Increasing the N content to above 4.5% results in a deterioration of the structure and of the homogeneity of the wells

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kondow, M., Kitatani, T., Nakasuka, S., Larson, M.C., Nakahara, K., Yazawa, Y., Okai, M., Uomi, K.; IEEE J. Quantum Electron. 3 (1997) 719.Google Scholar
[2] Höhnsdorf, F., Koch, J., Agert, C., Stolz, W.; J. Cryst. Growth 195 (1998) 391.Google Scholar
[3] Pan, Z., Miyamoto, T., Schlenker, D., Koyama, F., Iga, K.; Japn. J. Appl. Phys. 38, (1999) 1012.Google Scholar
[4] Xin, HP., Kavanagh, KL., Zhu, ZQ., Tu, CW.; Appl. Phys. Lett., vol.74, (1999) 2337.Google Scholar
[5] Hofer, F., Warbichler, P., Buchmayer, B., Kleber, S.; J. Microsc. 184 (1996) 163.Google Scholar
[6] Hofer, F., Warbichler, P., Grogger, W.; Ultramicroscopy 59 (1995) 15.Google Scholar
[7] Hasse, A., Volz, K., Schaper, A.K., Koch, J., Höhnsdorf, F., and Stolz, W.; Cryst. Res. Technol., to be publishedGoogle Scholar
[8] Höhnsdorf, F., Koch, J., Hasse, A., Volz, K., Schaper, A.K., Stolz, W., Giannini, C., Tapfer, L.; Physica E, in pressGoogle Scholar
[9] Okada, T., Weatherly, G.C., McComb, D.W.; J. Appl. Phys. 81 (1997) 2185.Google Scholar
[10] Norman, A.G., Ahrenkiel, S.P., Moutinho, H., Al-Jassim, M.M., Mascarebhas, A., Millunchick, J. Mirecki, Lee, S.R., Twesten, R.D., Follstaedt, D.M., Reno, J.L., Jones, E.D.; Appl. Phys. Lett. 73 (1998) 1844 Google Scholar