Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T19:30:32.962Z Has data issue: false hasContentIssue false

Structural Study of Fe-Based Glassy Alloys with a Large Supercooled Liquid Region

Published online by Cambridge University Press:  17 March 2011

M. Imafuku
Affiliation:
Inoue Superliquid Glass Project, ERATO, Sendai 982-0807, JAPAN
S. Sato
Affiliation:
Inoue Superliquid Glass Project, ERATO, Sendai 982-0807, JAPAN
T. Nakamura
Affiliation:
Institute for Advanced Materials Processing, Tohoku University, Sendai 980-8577, JAPAN
H. Koshiba
Affiliation:
Alps Electric Co, Nagaoka 940-8572, JAPAN
E. Matsubara
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, JAPAN
A. Inoue
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, JAPAN
Get access

Abstract

The thermal stability and local atomic structures of glassy Fe70M10B20 (M = Hf, Zr, Nb, W and Cr) alloys were analyzed by DSC, ordinary X-ray diffraction and AXS measurements. The random network of the trigonal prism-like structure of (Fe,M)3B with edge-sharing, was identified in all the Fe70M10B20 (M = Hf, Zr, Nb, W and Cr) alloys in spite of the wide variety of thermal stability upon heating. Several unique primary precipitated crystalline phases, such as Fe23B6 type and Fe-M phases, were observed in the alloys exhibiting a high thermal stability. These crystallization reactions require relatively long range rearrangements of the constituents and hence the thermal stability of the glassy phase increases, leading to the appearance of a large supercooled liquid region upon heating. These phenomena may be originated from the difference in the chemical affinity and the atomic size mismatch between M and Fe or B.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Inoue, A. and Gook, J. S.: Mater. Trans., JIM, 36, 1180 (1995).Google Scholar
2. Inoue, A., A. Takeuchi Zhang, T., Murakami, A. and Makino, A.: IEEE Trans. Magn., 32, 4866 (1996).Google Scholar
3. Inoue, A. and Gook, J. S.: Mater. Trans., JIM, 37, 32 (1996).Google Scholar
4. Inoue, A. and Zhang, T., Itoi, T. and Takeuchi, A.: Mater. Trans., JIM, 38, 359 (1997).Google Scholar
5. Inoue, A. and Koshiba, H.: Appl. Phys. Lett., 37, 744 (1998).Google Scholar
6. Inoue, A., Zhang, T. and Takeuchi, A.: Appl. Phys. Lett., 71, 464 (1997).Google Scholar
7. Zhang, W. and Inoue, A.: Mater.Trans. JIM, 40, 78(1999).Google Scholar
8. Zhang, W., Fujita, K., Fujita, K. and Inoue, A.: Mater.Trans. JIM, 40, 1123(1999).Google Scholar
9. Inoue, A., Zhang, T. and Koshiba, H.: J. Appl. Phys., 83, 6326(1998).Google Scholar
10. Inoue, A., Koshiba, H., Zhang, T. and Makino, A.: Mater. Trans., JIM, 38, 577(1997).Google Scholar
11. Inoue, A.: Mater. Sci. Forum, 179–181, 691(1995).Google Scholar
12. Inoue, A.: Mater.Sci. Eng., A226, 692 (1994).Google Scholar
13. Waseda, Y.: The Structure of Non-Crystalline Materials (MacGraw-Hill, New York, 1980)pp.2751.Google Scholar
14. International Tables for X-ray Crystallography Vol. IV, ed. Ibers, J. A. and Hamilton, W. C. (Kynoch Press, Birmingham, 1974)p.71 and p.148.Google Scholar
15. Cromer, D. T. and Mann, J. B.: J. Chem. Phys., 47, 1892 (1969).Google Scholar
16. Narten, A. H. and Levy, H. A.: Science, 160, 447 (1969).Google Scholar
17. Narten, A. H.: J. Chem. Phys., 56, 1905 (1972), 1905.Google Scholar
18. Matsubara, E., Tamura, T., Waseda, Y., Inoue, A., Zhang, T. and Masumoto, T.: Mater. Trans., JIM, 33, 873(1992).Google Scholar
19. Saito, M., Park, C., Omote, K., Sugiyama, K. and Waseda, Y.: J. Phys. Soc. Japan, 66, 633(1997).Google Scholar
20. Li, Y., Ng, S. C., Ong, C. K., Hng, H. H. and Goh, T. T.: Scripta Mater., 36, 783 (1997), 783.Google Scholar
21. Pearson's Handbook of Crystallographic Data for Intermetallic Phases, Vol.2, ed. Villard, P. and Calvert, L. D. (ASM, Metals Park, OH, 1985)p.1297.Google Scholar
22. Kahn, Y. and Wibbeke, H.: Z. Metallkde., 82, 703(1991).Google Scholar
23. Boer, F. R., Boom, R., Mattens, W. C. M., Miedema, A. R. and Niessen, A. K.: Cohesion in Metals, (North-Holland, Amsterdam, 1989).Google Scholar
24. Goldschmidt, V. M.: Geochemistry (Clarendon Press, Oxford,1954)p.118.Google Scholar
25.our unpublished work, 1999.Google Scholar