Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-28T03:14:34.446Z Has data issue: false hasContentIssue false

Sulfur Nanoparticles Synthesis and Characterization from H2S Gas, Using Novel Biodegradable Iron Chelates in Aqueous Surfactant Systems

Published online by Cambridge University Press:  01 February 2011

Aniruddha Subhash Deshpande
Affiliation:
aniruddhadesh@rediffmail.com, National Chemical Labrotary, Chemical Engineering and Process Development Division, Dr. Homi Bhabha Road,, Pashan,, Pune, 411008, India, +91-20-25902157, +91-20-25902612
Ramdas B. Khomane
Affiliation:
aniruddhadesh@rediffmail.com, National Chemical Labrotary, Chemical Engineering and Process Development Division, Dr. Homi Bhabha Road, Pashan,, Pune,, 411008,, India
Bhalchandra K. Vaidya
Affiliation:
aniruddhadesh@rediffmail.com, National Chemical Labrotary, Chemical Engineering and Process Development Division, Dr. Homi Bhabha Road, Pashan,, Pune,, 411008,, India
Renuka M. Joshi
Affiliation:
rm.joshi@ncl.res.in, National Chemical Labrotary, Chemical Engineering and Process Development Division, Dr. Homi Bhabha Road, Pashan,, Pune,, 411008,, India
Arti S. Harle
Affiliation:
as.harle@ncl.res.in, National Chemical Labrotary, Center for Material Characterization Division, Dr. Homi Bhabha Road, Pashan,, Pune,, 411008,, India
Bhaskar D. Kulkarni
Affiliation:
bd.kulkarni@ncl.res.in, National Chemical Labrotary, Chemical Engineering and Process Development Division, Dr. Homi Bhabha Road, Pashan,, Pune,, 411008,, India
Get access

Abstract

Sulfur nanoparticles were synthesized from hazardous H2S gas by desulfurization based on liquid redox process [1]. The use of novel biodegradable iron chelates, in particular, FeCl3-malic acid chelate system has been extensively studied in various aqueous surfactant systems of Tween 80, SDS, CTAB for catalytic oxidation of H2S gas at ambient conditions of temperature, pressure and neutral pH. The structural features of sulfur nanoparticles have been characterized by XRD, TEM, and DLS measurements. XRD analysis indicates the presence of Metal-sulfur (JCPDS-08247). TEM analysis shows that the morphology of sulfur nanoparticles synthesized in aqueous surfactant system of Tween 80 is nearly uniform in size of 12nm average particle size, in SDS surfactant system shows 15nm average particle size, where as sulfur nanoparticles synthesized in CTAB shows average particle size of 7nm. The DLS result shows the mono-dispersity of the sulfur nanoparticles in the aqueous surfactant systems. The described process serves mainly two objectives; (a) waste utilization for preparation of commercially important nano-sulfur product and (b) reduction in environmental pollution. 1. G. Nagal, Chem. Eng. 104, 125 (1997).

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Leslie, K.S. Millington, G.W. Levell, N.J. J. of Cosmetic Dermatology. 13, 94 (2004).Google Scholar
2 Index, Merck, 13th ed., Merck & Co. Inc., USA, pp.1599 (2001).Google Scholar
3 Lide, D. R. CRC Handbook of Chemistry and Physics, 85th ed., CRC press: New York, pp. 30 (2004)Google Scholar
4 Weld, J. T., Gunther, A., J. Exp. Med. 531 (1946).Google Scholar
5 Yu, X., Xie, J. Yang, J. Wang, k. J. of Power Sources. 132, 181 (2004).Google Scholar
6 Zheng, W. Liu, Y. W. Hu, X. G. Zhang, C. F. Electrochimica Acta. 51, 1330 (2006).10.1016/j.electacta.2005.06.021Google Scholar
7 Barkauskas, J., Juskenas, R., Mileriene, V., Kubilius, V., Mater.Res.Bull. 42, 1732 (2007).Google Scholar
8 Smorgonskaya, E. A. Kyutt, R. N. Shuman, V. B. Danishevskii, A. M. Gordeev, S. K. Grechinskaya, A. V. Phys. Solid State. 44, 1908 (2002).Google Scholar
9 Santiago, P., Carvajal, E., Mendoza, D., Rendon, L., Microsc. Microanal. 12(supp.2) (2006).Google Scholar
10 Guo, Y., Zhao, J., ang, S., Yu, K., Wang, Z. Zhang, H. Powder Technolo. 162, 83 (2006).Google Scholar
11 Jhon, S. E. Environ. Prog. 21, 143 (2002).Google Scholar
12 Klaus, T. Chem. Eng. World. 39, 43 (2004).Google Scholar
13 Yu, W. C. Astarita, G. Chem. Eng. Sci. 42, 418 (1987).Google Scholar
14 Asai, S. Konishi, Y. Yabu, T. AIChE J., 36, 1331 (1990).Google Scholar
15 Pagella, C. Faveri, D. M. De, Chem. Eng. Sci. 55, 2185 (2000).10.1016/S0009-2509(99)00482-0Google Scholar
16 Jensen, A. B. Webb, C. Enzyme. Microb. Technol. 17, 2 (1995).Google Scholar
17 Nagal, G. Chem. Eng. 104, 125 (1997).Google Scholar
18 Demmink, J. F. Mehra, A. Beenackers, A. A. C. M., Chem. Eng. Sci. 57, 1723 (2002).Google Scholar
19 Pandey, R. A. Malhotra, S. Crit. Rev. Env. Sci. Tec. 29, 229 (1999).Google Scholar
20 Karel, V. Handbook of Environmental Data on organic chemicals. 3rd ed. New York,(1996).Google Scholar
21 Deshpande, A.S. Sankpal, N. V. Kulkarni, B. D. Indian Patent application number 1366/DEL/2003.Google Scholar
22 Prabhane, R.V. Tambe, S.S. Kulkarni, B.D. Computers and Chemistry. 24, 699 (2000).10.1016/S0097-8485(00)00072-3Google Scholar
23 Mason, R.L. Gunst, R.F. Hess, J.L. Statistical design and analysis of experiments. 2nd ed. New York, (2003).Google Scholar