Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T09:27:47.247Z Has data issue: false hasContentIssue false

Synthesis of copper nanoparticles by polyol/alcohol reduction method

Published online by Cambridge University Press:  24 January 2012

Jhon L. Cuya Huaman
Affiliation:
Department of Materials Science, School of Engineering, The University of Shiga Prefecture. Hikone, Japan.
Kimitaka Sato
Affiliation:
DOWA Holdings Co. Ltd. Tokyo-Japan
Satoru Kurita
Affiliation:
DOWA Holdings Co. Ltd. Tokyo-Japan
Takatoshi Matsumoto
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University. Sendai-Japan.
Hiroshi Miyamura
Affiliation:
Department of Materials Science, School of Engineering, The University of Shiga Prefecture. Hikone, Japan.
Jeyadevan Balachandran
Affiliation:
Department of Materials Science, School of Engineering, The University of Shiga Prefecture. Hikone, Japan.
Get access

Abstract

Oleylamine stabilized copper nanoparticles with an average diameter of ~10 nm were obtained by reducing copper chloride with 1-heptanol. Surfactants such as oleylamine, poly (N-vinylpyrrolidone) and oleic acid were used to avoid the agglomeration and growth of the particles during the synthesis and consequent dispersion in organic solvent. The analyses of the samples indicated that oleylamine results to be more suitable to prepare stable copper suspensions in dodecane. The electrical resistivity of the copper thin films prepared by spin coating the copper nanoink and annealed at 250 °C under different atmospheres was less than 35 μΩ-cm, which is closer to the values reported for Cu nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lin, J. C. and Chan, J. Y., Mater. Chem. Phys. 43, 256 (1996).Google Scholar
2. Zuo, R., Li, L. and Gui, Z., Ceram. Int. 26, 673 (2000).Google Scholar
3. Harsanyi, G. and Inzelt, G., IEEE2000, Electronic Components & Technology Conference, Las Vegas, USA, 2000, pp. 16661673.Google Scholar
4. Woo, K., Kim, Y, Lee, B, Kim, J. and Moon, J., ACS Appl. Mater. Interfaces 3, 2377 (2011).Google Scholar
5. Buffat, P. and Borel, J.-P., Phys. Rev. A 13, 2287 (1976).Google Scholar
6. Sato, K. and Saito, K., Proceedings of The Spring Meeting of the Mining and Materials Processing Institute of Japan, Tokyo, Japan, 2008, pp. 189192.Google Scholar
7. Salavati-Niasari, M. and Davar, F., Mater. Lett. 63, 441 (2009).Google Scholar
8. Manocha, S., Disher, I. A. and Manocha, L. M., Adv. Sci. Lett. 2, 50 (2009).Google Scholar
9. Joseyphus, R. J., Kodama, D., Matsumoto, T., Sato, Y., Jeyadevan, B. and Tohji, K., J. Magn. Magn. Mater. 310, 2393 (2007).Google Scholar
10. Kodama, D., Shinoda, K., Sato, K., Konno, Y., Joseyphus, R. J., Motomiya, K., Takahashi, H., Matsumoto, T., Sato, Y., Tohji, K. and Jeyadevan, B., Adv. Mater. 18, 3154 (2006).Google Scholar
11. Anžlovar, A., Orel, Z. C., and Žigon, M., J. Nanosci. Nanotechnol. 8, 3516 (2008).Google Scholar
12. Sarkar, A., Mukherjee, T. and Kapoor, S., J. Phys. Chem. C 112, 3334 (2008).Google Scholar
13. Yang, J. G., Zhou, Y.-L., Okamoto, T., Bessho, T., Satake, S., Ichino, R. and Okido, M., Chem. Lett. 35, 1190 (2006).Google Scholar
14. Chen, S. and Sommers, J. M., J. Phys. Chem. B 105, 8816 (2001).Google Scholar
15. Salavati-Niasari, M., Fereshteh, Z. and Davar, F., Polyhedron 28, 126 (2009).Google Scholar
16. Nakamoto, M., Yamamoto, M., Kawashiwagi, Y., Kakeuchi, H., Tsugimoto, T. and Yoshida, S., MES2006 16th Microelectronics Symposium, Osaka, Japan, 2006, pp. 5154.Google Scholar
17. Cuya Huaman, J. L., Sato, K., Kurita, S., Matsumoto, T. and Jeyadevan, B., J. Mater. Chem. 21, 7062 (2011).Google Scholar
18. Cuya Huaman, J. L., Fukao, S., Shinoda, K. and Jeyadevan, B., CrystEngComm 13, 3364 (2011).Google Scholar
19. Liu, X., Atwater, M., Wang, J., Dai, Q., Zou, J., Brennan, J. P. and Huo, Q., J. Nanosci. Nanotechnol. 7, 3126 (2007).Google Scholar
20. Wang, X., Zhang, C., Wang, X. and Gu, H., Appl. Surf. Sci. 253, 7516 (2007).Google Scholar