Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-jzjqj Total loading time: 0.415 Render date: 2022-08-14T10:43:16.969Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Synthesis of Crystalline ZnO Nanosheets on Graphene and Other Substrates at Ambient Conditions

Published online by Cambridge University Press:  28 May 2012

Phani Kiran Vabbina
Affiliation:
Electrical & Computer Engineering Department, Florida International University, Miami, FL.
Santanu Das
Affiliation:
Mechanical and Materials Engineering, Florida International University, Miami, FL.
Nezih Pala
Affiliation:
Electrical & Computer Engineering Department, Florida International University, Miami, FL.
Wonbong Choi
Affiliation:
Mechanical and Materials Engineering, Florida International University, Miami, FL.
Get access

Abstract

We report on the fabrication of ZnO nanosheets on Graphene and other substrates at ambient conditions. The growth mechanism and the effect of the substrate are also discussed. Our synthesis method is based on sonochemical reaction of Zinc nitrate hexahydrate and hexamethylenetetramine in aqueous solutions. Extensive analysis by transmission electron microscopy, energy dispersive x-ray spectroscopy (EDS) revealed crystalline ZnO composition of the ZnO nanosheets. The proposed method is a rapid, inexpensive, low-temperature, catalystfree, CMOS compatible and environmentally benign alternative to existing growth techniques.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vabbina, Phani K.. et al. ., “Synthesis of crystalline ZnO nanostructures on arbitrary substrates at ambient conditions”, Proc. SPIE 8106OH (2011)CrossRefGoogle Scholar
2. Lin, Jian. et al. ., “Heterogeneous Graphene Nanostructures: ZnO Nanostructures Grown on Large-Area Graphene Layers”, Small Vol. 6, 24482452, 2010 CrossRefGoogle ScholarPubMed
3. Hu, J. Q.. et al. ., “Two-dimensional micrometer-sized single-crystalline ZnO thin nanosheets”, applied physics letters Vol. 83 November 2003.CrossRefGoogle Scholar
4. Kar, Soumtra. et al. ., “Simple Solvothermal Route To Synthesize ZnO Nanosheets, Nanonails, and Well-Aligned Nanorod Arrays”, Journal of Physical Chemistry B 2006, 110 Google ScholarPubMed
5. Nayak, Avinash P., et al. . “Purely sonochemical route for oriented zinc oxide nanowire growth on arbitrary substrate”, Proc. SPIE 768312 (2010).CrossRefGoogle Scholar
6. kar, S. et al. ., “One-Dimensional ZnO Nanostructure Arrays: Synthesis and Characterization”, Journal of Physical Chemistry B 2006, 110 Google ScholarPubMed
7. Xu, Sheng, Wang, Zhong Lin, “One-Dimensional ZnO Nanostructures: Solution Growth and Functional Properties”. Nano Research Vol. 4 10131098, 2011.CrossRefGoogle Scholar
8. Baruah, Sunandan, Dutta, Joydeep, “Hydrothermal growth of ZnO nanostructuresScience and Technology of Advanced Materials, Vol. 10 2009 CrossRefGoogle ScholarPubMed
9. Liu, Run. et al. , “Epitaxial Electrodeposition of Zinc Oxide Nanopillars on Single-Crystal GoldChemistry of Materials, 2001, 13(2)CrossRefGoogle Scholar
10. Jianqiang, X. et al. , “Hydrothermal synthesis and gas sensing characters of ZnO nanorodsSensors and Actuators B 113, 526531, (2006)CrossRefGoogle Scholar
11. Das, S.; Sudhagar, P.; Verma, V.; Song, D.; Ito, E.; Lee, S. Y.; Kang, Y. S.; Choi, W., Amplifying Charge-Transfer Characteristics of Graphene for Triiodide Reduction in Dye-Sensitized Solar Cells. Advanced Functional Materials 2011, 21, 37293796 CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Synthesis of Crystalline ZnO Nanosheets on Graphene and Other Substrates at Ambient Conditions
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Synthesis of Crystalline ZnO Nanosheets on Graphene and Other Substrates at Ambient Conditions
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Synthesis of Crystalline ZnO Nanosheets on Graphene and Other Substrates at Ambient Conditions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *