Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-9th95 Total loading time: 0.185 Render date: 2022-12-03T21:38:33.414Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Thermal Conductivity Measurement of Graphene Composite

Published online by Cambridge University Press:  11 April 2013

Jiuning Hu
Affiliation:
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, U.S.A. Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, U.S.A.
Wonjun Park
Affiliation:
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, U.S.A. Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, U.S.A.
Xiulin Ruan
Affiliation:
Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, U.S.A. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, U.S.A.
Yong P. Chen
Affiliation:
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, U.S.A. Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, U.S.A. Department of Physics, Purdue University, West Lafayette, IN 47907, U.S.A.
Get access

Abstract

Graphene composites (GCs) have attracted much attention recently. It is interesting to explore thermal properties of GCs in which graphene filler concentrations are tunable. Here, we use 3ω method to measure the thermal conductivity of GCs synthesized from reduced graphene oxide (RGO) dispersed in polystyrene. To avoid the detrimental effect of lithography processes to GCs, we have developed a novel method employing polyvinyl alcohol and poly(methyl methacrylate) (PMMA) as a holder film to transfer micrometer-sized metal heaters/sensors onto GC surface. Room temperature measurements of the thermal conductivity of GCs are performed. The thermal conductivity is enhanced by ∼ 35 % when adding 5 vol.% of RGO filler concentration. Our measurements will be helpful to probe and understand the thermal transport properties of graphene based composites.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T. and Ruoff, R.S., Nature 442, 282 (2006).10.1038/nature04969CrossRef
Shahi, K.M.F. and Balandin, A.A., Nano Lett. 12, 861 (2012).10.1021/nl203906rCrossRef
Yavari, F., Fard, H.R., Pashay, K., Rafiee, M.A., Zamiri, A., Yu, Z., Ozisik, R., Borca-Tasciuc, T. and Koratkar, N., J. Phys. Chem. C 115, 8753 (2011).10.1021/jp200838sCrossRef
Hummers, W.S. Jr. and Offeman, R.E., J. American Chemical Society 80, 1339 (1958).10.1021/ja01539a017CrossRef
Cahill, D.G., Rev. Sci. Instrum. 61, 802 (1990).10.1063/1.1141498CrossRef
Late, D.J., Maitra, U., Panchakarla, L.S., Waghmare, U.V. and Rao, C.N.R., J. Phys.: Condens. Matter 23, 055303 (2011).
Dames, C. and Chen, G., Rev. Sci. Instrum. 76, 124902 (2005).10.1063/1.2130718CrossRef
Yu, S., Hing, P. and Hu, X., Composites: Part A 33, 289 (2002).10.1016/S1359-835X(01)00107-5CrossRef
Chiu, J. and Fair, P.G., Thermochim. Acta 34, 267 (1979).10.1016/0040-6031(79)87116-6CrossRef
Yu, W., Xie, H., Wang, X. and Wang, X., Physics Letters A 375, 1323 (2011).10.1016/j.physleta.2011.01.040CrossRef
Schwamb, T., Burg, B.R., Schirmer, N.C. and Poulikakos, D., Nanotechnology 20, 405704 (2009).10.1088/0957-4484/20/40/405704CrossRef
Koh, Y.P., Mckenna, G.B. and Simon, S.L., Journal of Polymer Science Part B: Polymer Physics 44, 3518 (2006).10.1002/polb.21021CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Thermal Conductivity Measurement of Graphene Composite
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Thermal Conductivity Measurement of Graphene Composite
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Thermal Conductivity Measurement of Graphene Composite
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *