Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-frvt8 Total loading time: 0.309 Render date: 2022-09-29T14:14:27.042Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Thin YBa2Cu3O7-δ patterns by Chemical Solution Processing using Ink-Jet Printing

Published online by Cambridge University Press:  17 May 2013

Jonas Feys
Affiliation:
SCRiPTS, Ghent University, Ghent, Belgium
Bram Ghekiere
Affiliation:
SCRiPTS, Ghent University, Ghent, Belgium
Petra Lommens
Affiliation:
SCRiPTS, Ghent University, Ghent, Belgium
Simon C. Hopkins
Affiliation:
ASCG, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, UK
Pieter Vermeir
Affiliation:
SCRiPTS, Ghent University, Ghent, Belgium Department of Industrial Sciences; University College Ghent; Ghent; Belgium
Michael Baecker
Affiliation:
Deutsche Nanoschicht GmbH, Rheinbach, Germany
Bartek A. Glowacki
Affiliation:
ASCG, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, UK Department of Physics and Energy, University of Limerick, Ireland Institute of Power Engineering, ul Augustowka 6, 02-981 Warsaw, Poland
Isabel Van Driessche
Affiliation:
SCRiPTS, Ghent University, Ghent, Belgium
Get access

Abstract

In this paper, we present ink-jet printing as an attractive alternative to lithography and etching methods for the development of multi-filamentary YBa2Cu3O7-δ coated conductors. Our research is mainly focused on the study of the influence of rheological parameters on the printability of water-based inks in order to produce superconducting patterns on SrTiO3 and CeO2-La2Zr2O7-Ni5at%W substrates. An aqueous YBCO precursor ink with a total metal ion concentration of 1.1 mol/L with a viscosity of 6.79 mPa s and a surface tension of 67.9 mN/m is developed. Its printing behavior using several ink-jet printing devices is verified using a camera with strobed illumination to quantify droplet velocity and volume. After optimization of the deposition parameters, YBCO tracks with different dimensions could be printed on both types of substrates. Their shape and dimensions were determined using optical microscopy and non-contact profilometry, showing 100-200 nm thick and 40-200 µm wide tracks. Finally, resistivity measurements were performed on the widest tracks on SrTiO3 showing a clear drop in the resistivity starting from 88.6 K with a ∆Tc of 1.4 K.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhang, W.; Rupich, M. W.; Schoop, U.; Verebelyi, D. T.; Thieme, C. L. H.; Li, X.; Kodenkandath, T.; Huang, Y.; Siegal, E.; Buczek, D.; Carter, W.; Nguyen, N.; Schreiber, J.; Prasova, M.; Lynch, J.; Tucker, D.; Fleshler, S., Physica C 2007, 463–465, 505509.CrossRef
Iijima, Y.; Kakimoto, K.; Sutoh, Y.; Ajimura, S.; Saitoh, T., Physica C 2004, 412–414, Part 2, 801806.CrossRef
Shiohara, Y.; Kitoh, Y.; Izumi, T., Physica C 2006, 445–448, 496503.CrossRef
Van Driessche, I.; Feys, J.; Hopkins, S. C.; Lommens, P.; Granados, X.; Glowacki, B. A.; Ricart, S.; Holzapfel, B.; Vilardell, M.; Kirchner, A.; Baecker, M., SUST 2012, 25 (6), 065017 (12p).
Selvamanickam, V.; Chen, Y.; Xiong, X.; Xie, Y. Y.; Martchevski, M.; Rar, A.; Qiao, Y.; Schmidt, R. M.; Knoll, A.; Lenseth, K. P.; Weber, C. S., IEEE Trans. Appl. Supercond. 2009, 19(3), 32253230.CrossRef
Iijima, Y.; Hosaka, M.; Sadakata, N.; Saitoh, T.; Kohno, O.; Takeda, K., Appl Phys Lett 1997, 71(18), 26952697.CrossRef
Cobb, C. B.; Barnes, P. N.; Haugan, T. J.; Tolliver, J.; Lee, E.; Sumption, M.; Collings, E.; Oberly, C. E., Physica C 2002, 382(1), 5256.CrossRef
Majoros, M.; Glowacki, B. A.; Campbell, A. M.; Levin, G. A.; Barnes, P. N.; Polak, M., IEEE Trans. Appl. Supercond. 2005, 15(2), 28192822.CrossRef
Sumption, M. D.; Coleman, E. L.; Cobb, C. B.; Barnes, P. N.; Haugan, T. J.; Tolliver, J.; Oberly, C. E.; Collings, E. W., IEEE Trans. Appl. Supercond. 2003, 13(2), 35533556.CrossRef
Carr, W. J.; Oberly, C. E., IEEE Trans. Appl. Supercond. 1999, 9(2), 14751478.CrossRef
Oberly, C. E.; Razidlo, B.; Rodriguez, F., IEEE Trans. Appl. Supercond. 2005, 15(2), 16431646.CrossRef
Amemiya, N.; Kasai, S.; Yoda, K.; Jiang, Z. N.; Levin, G. A.; Barnes, P. N.; Oberly, C. E., SUST 2004, 17(12), 14641471.
Oberly, C. E.; Long, L.; Rhoads, G. L.; Carr, W. J., Cryogenics 2001, 41(2), 117124.CrossRef
Tsukamoto, O.; Sekine, N.; Ciszek, M.; Ogawa, J., IEEE Trans. Appl. Supercond. 2005, 15(2), 28232826.CrossRef
Glowacki, B. A.; Majoros, M., SUST 2000, 13(7), 971973.
Sumption, M. D.; Barnes, P. N.; Collings, E. W., IEEE Trans. Appl. Supercond. 2005, 15(2), 28152818.CrossRef
Goldacker, W.; Frank, A.; Heller, R.; Schlachter, S. I.; Ringsdorf, B.; Weiss, K. P.; Schmidt, C.; Schuller, S., IEEE Trans. Appl. Supercond. 2007, 17(2), 33983401.CrossRef
Badcock, R. A.; Long, N. J.; Mulholland, M.; Hellmann, S.; Wright, A.; Hamilton, K. A., IEEE Trans. Appl. Supercond. 2009, 19(3), 32443247.CrossRef
Suzuki, K.; Yoshizumi, M.; Izumi, T.; Shiohara, Y.; Iwakuma, M.; Ibi, A.; Miyata, S.; Yamada, Y., Physica C 2008, 468(15-20), 15791582.CrossRef
Sumption, M. D.; Collings, E. W.; Barnes, P. N., SUST 2005, 18(1), 122134.
Abraimov, D.; Gurevich, A.; Polyanskii, A.; Cai, X. Y.; Xu, A.; Pamidi, S.; Larbalestier, D.; Thieme, C. L. H., SUST 2008, 21 (8), 082004 (4 p).
Duckworth, R. C.; Paranthaman, M. P.; Bhuiyan, M. S.; List, F. A.; Gouge, M. J., IEEE Trans. Appl. Supercond. 2007, 17(2), 31593162.CrossRef
Minsoo, K.; Freyhardt, H. C.; Lee, T. R.; Jacobson, A. J.; Galstyan, E.; Usoskin, A.; Rutt, A., IEEE Trans. Appl. Supercond. 2013, 23(3), 6601304 (4 p).CrossRef
Kopera, L.; Smatko, V.; Prusseit, W.; Polak, M.; Semerad, R.; Strbik, V.; Souc, J., Physica C 2008, 468(24), 23512355.CrossRef
Glowacki, B. A.; Mouganie, T., Inst. Phys. Conf. Ser. 2003, No. 181, 1884.
Feys, J.; Vermeir, P.; Lommens, P.; Hopkins, S. C.; Granados, X.; Glowacki, B. A.; Baecker, M.; Reich, E.; Ricard, S.; Holzapfel, B.; Van Der Voort, P.; Van Driessche, I., J. Mater. Chem. 2012, 22, 37173726.CrossRef
Tekin, E.; Smith, P. J.; Schubert, U. S., Soft Matter 2008, 4(4), 703713.CrossRef
Windle, J.; Derby, B., J Mater Sci Lett 1999, 18(2), 8790.CrossRef
Derby, B., In Annual Review Of Materials Research, Annual Reviews: Palo Alto, 2010; Vol. 40, pp 395414.Google Scholar
Arin, M.; Lommens, P.; Hopkins, S. C.; Pollefeyt, G.; Van der Eycken, J.; Ricart, S.; Granados, X.; Glowacki, B. A.; Van Driessche, I., Nanotechnology 2012, 23(16), 165603 (10p).CrossRef
Mouganie, T.; Glowacki, B. A., J Mater Sci 2006, 41(24), 82578264.CrossRef
Vermeir, P.; Feys, J.; Schaubroeck, J.; Verbeken, K.; Baecker, M.; Van Driessche, I., Mater. Chem. Phys. 2012, 133(2-3), 9981002.CrossRef
Van Driessche, I.; Penneman, G.; De Meyer, C.; Stambolova, I.; Bruneel, E.; Hoste, S.; Ttp, In Euro Ceramics Vii, Pt 1-3, 2002; Vol. 206-2, pp 479482.
Penneman, G.; Van Driessche, I.; Bruneel, E.; Hoste, S., In Euro Ceramics Viii, Pts 1-3, Mandal, H. O. L., Ed. 2004; Vol. 264268, pp 501504.Google Scholar
Cloet, V.; Cordero-Cabrera, M. C.; Mouganie, T.; Glowacki, B. A.; Falter, M.; Holzapfel, B.; Engell, J.; Backer, M.; Van Driessche, I., Science and Engineering of Novel Superconductors 2006, 153158.
Vermeir, P.; Deruyck, F.; Feys, J.; Lommens, P.; Schaubroeck, J.; Van Driessche, I., J. Sol-Gel Sci. Techn. 2012, 62(3), 378388.CrossRef
Lommens, P.; Feys, J.; Vrielinck, H.; De Buysser, K.; Herman, G.; Callens, F.; Van Driessche, I., Dalton Trans. 2012, 41(12), 35743582.CrossRef
Fromm, J. E., IBM J Res Dev 1984, 28(3), 322333.CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Thin YBa2Cu3O7-δ patterns by Chemical Solution Processing using Ink-Jet Printing
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Thin YBa2Cu3O7-δ patterns by Chemical Solution Processing using Ink-Jet Printing
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Thin YBa2Cu3O7-δ patterns by Chemical Solution Processing using Ink-Jet Printing
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *