Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T21:15:44.649Z Has data issue: false hasContentIssue false

Transport properties of superconducting amorphous W-based nanowires fabricated by focused-ion-beam-induced-deposition for applications in Nanotechnology

Published online by Cambridge University Press:  31 January 2011

Jose M De Teresa
Affiliation:
deteresa@unizar.es, ICMA, CSIC-U.Zaragoza, Condensed Matter Physics Department, Facultad de Ciencias, Plaza San Francisco, Zaragoza, 50009, Spain, +34 976762463, +34 976761229
Amalio Fernandez-Pacheco
Affiliation:
fpacheco@unizar.es, University of Zaragoza, Zaragoza, Spain
Rosa Cordoba
Affiliation:
rocorcas@unizar.es, University of Zaragoza, Zaragoza, Spain
Javier Sese
Affiliation:
jsese@unizar.es, University of Zaragoza, Zaragoza, Spain
Ricardo Ibarra
Affiliation:
ibarra@unizar.es, University of Zaragoza, Zaragoza, Spain
Isabel Guillamon
Affiliation:
isabel.guillamon@uam.es, University Autonomous of Madrid, Madrid, Spain
Hermann Suderow
Affiliation:
hermann.suderow@uam.es, University Autonomous of Madrid, Madrid, Spain
Sebastian Vieira
Affiliation:
sebastian.vieira@uam.es, University Autonomous of Madrid, Madrid, Spain
Get access

Abstract

We report transport measurements of superconducting amorphous W-based nanodeposits fabricated by focused-ion-beam-induced-deposition (FIBID) technique using W(CO)6 as the gas precursor. We have found that nanowires with width down to ˜100 nm can be grown by FIBID, maintaining the relatively high TC of �5.2 K shown by wider nanodeposits. The critical current found in these nanowires is in the range of 0.8 mA/?m2 at 2 K. At that temperature the critical field HC2 is found to be ?8 T. As previously shown by STM measurements [I. Guillam�n et al., New Journal of Physics 10, 093005 (2008)], these nanodeposits closely follow the BCS theory and are very stable under ambient conditions. All these features pave the way for a wide range of applications of these FIBID W-based nanowires in the field of Nanotechnology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Arutyunov, K.Yu. Golubev, D.S. Zaikin, A.D. Physics Reports 464, 1 (2008)Google Scholar
2 Chibotauro, L.F. Ceulemans, A. Bruyndoncx, V. and Moschalkov, V.V. Nature 408, 833 (2000); I.V., Grigorieva, et al., Phys. Rev. Lett. 92, 237001 (2004)Google Scholar
3 Velez, M. et al. , J. Magn. Magn. Mater. 320, 2547 (2008)Google Scholar
4 Granata, C. Exposito, E. Vettoliere, A. Petti, L. Russo, M. Nanotechnology 19, 275501 (2008); C.H., Wu, et al., Nanotechnology 19, 315304 (2008)Google Scholar
5 Clarke, J. and Wilhelm, F.K. Nature 453, 1031 (2008)Google Scholar
6 Sadki, E.S. Ooi, S. Hirata, K. Appl. Phys. Lett. 85, 6206 (2004)Google Scholar
7 Kasumov, A.Y. et al. , Phys. Rev. B 72, 033414 (2005)Google Scholar
8 Luxmoore, I.J. et al. , Thin Solid Films 515, 6791 (2007)Google Scholar
9 Spoddig, D. et al. , Nanotechnology 18, 495202 (2007)Google Scholar
10 Guillamón, I. et al. , New Journal of Physics 10, 093005 (2008); I. Guillamón et al., Journal of Physics: Conference Series (2009), in pressGoogle Scholar
11 Li, W. et al. , Journal of Appl. Physics 104, 093913 (2008)Google Scholar
12 van, W.F. Dorp and Hagen, C.W. J. Appl. Phys. 104, 081301 (2008)Google Scholar
13 Utke, I. Hoffmann, P. Melngailis, J. J. Vac. Sci. Technol. B 26, 1197 (2008)Google Scholar
14 Collver, M.M. and Hammond, R.H. Phys. Rev. Lett. 30, 92 (1973)Google Scholar
15 Hellerqvist, M.C. et al. , Phys. Rev. Lett. 76, 4022 (1996); N., Kokubo, et al., Phys. Rev. Lett. 75, 184512 (2007)Google Scholar
16 Dorsey, A.T., Nature 408, 783 (2000)Google Scholar
17 Shailos, A. et al. , Europhysics Letters 79, 57008 (2007)Google Scholar
18 Soulen, J.R. et al. , Science 282, 85 (1998)Google Scholar