Hostname: page-component-588bc86c8c-2zrg9 Total loading time: 0 Render date: 2023-11-30T14:46:29.002Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Tuning Electronic and Structural Properties of Triple Layers of Intercalated Graphene and Hexagonal Boron Nitride: An Ab-initio Study.

Published online by Cambridge University Press:  15 July 2011

Samir S. Coutinho
Instituto de “Física Gleb Wataghin”, Universidade Estadual de Campinas, CEP 13082-70, Campinas - SP, Brazil.
David L. Azevedo
Departamento de Física, Universidade Federal do Maranhão, CEP 65080–580, São Luís - MA Brazil. Departamento de Física, Universidade Federal do Rio Grande do Norte, CEP 59072–970, Natal – RN, Brazil.
Douglas S. Galvão
Instituto de “Física Gleb Wataghin”, Universidade Estadual de Campinas, CEP 13082-70, Campinas - SP, Brazil.
Get access


Recently, several experiments and theoretical studies demonstrated the possibility of tuning or modulating band gap values of nanostructures composed of bi-layer graphene, bi-layer hexagonal boron-nitride (BN) and hetero-layer combinations. These triple layers systems present several possibilities of stacking. In this work we report an ab initio (within the formalism of density functional theory (DFT)) study of structural and electronic properties of some of these stacked configurations. We observe that an applied external electric field can alter the electronic and structural properties of these systems. With the same value of the applied electric field the band gap values can be increased or decreased, depending on the layer stacking sequences. Strong geometrical deformations were observed. These results show that the application of an external electric field perpendicular to the stacked layers can effectively be used to modulate their inter-layer distances and/or their band gap values.

Research Article
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1. Novoselov, K. S. et al. , Science 306, 666 (2004).Google Scholar
2. Zhang, Y., Tan, Y.-W., Stormer, H. L., and Kim, P., Nature (London) 438, 201 (2005).Google Scholar
3. Gao, Y., Hao, P., Physica E 41, 1561 (2009).Google Scholar
4. Lee, C., Wei, X., Kysar, J. W., and Hone, James,.Science 321, 385 (2008).Google Scholar
5. Novoselov, K. S., McCann, E., Morozov, S. V., Morozov, V., I. Fal’ko, V., Katsnelson, M. I., Zeitler, U., Jiang, D., Schedin, F., and Geim, A. K., Nature Phys. 2, 177 (2006).Google Scholar
6. Yang, L., Deslippe, J., Park, C. H., Cohen, M.L., and Louie, S. G., Phys. Rev. Lett. 103, 186802 (2009).Google Scholar
7. Usachov, D. et al. , Phys. Rev. B 82, 075415 (2010).Google Scholar
8. Shi, Y. et al. , Nano Lett. 10, 4134 (2010).Google Scholar
9. Ohta, T. et al. , Science 313, 951 (2006).Google Scholar
10. Oostinga, J. B., Nature Mater. 7, 151 (2008).Google Scholar
11. Zhang, Yuanbo et al. , Nature (London) 459, 820 (2009).Google Scholar
12. Latil, S. and Henrard, L., Phys. Rev. Lett. 97, 036803 (2006).Google Scholar
13. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. and Geim, A. K., Rev. Mod. Phys. 81, 1 (2009).Google Scholar
14. Zhang, F., Sahu, B., Min, H., Phys. Rev. B 82, 035409 (2010).Google Scholar
15. Koshino, M., Phys. Rev. B 81, 125304 (2010).Google Scholar
16. Yang, Z. and Ni, J., Journal of Applied Physics 107, 104301 (2010).Google Scholar
17. Delley, B., Chem, J.. Phys. 113, 7756 (2000).Google Scholar
18. Perdew, P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).Google Scholar
19. Schabel, M. C. and Martins, J. L., Phys. Rev. B 46, 7185 (1992).Google Scholar
20. Charlier, J. -C., Gonzze, X. and Michenaund, J.-P., Carbon 32, 289 (1994).Google Scholar