Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-9g8ph Total loading time: 0.375 Render date: 2022-07-01T05:50:00.735Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Well-controllable Fabrication of Aligned ZnO Nanorods for Dye-sensitized Solar Cell Application

Published online by Cambridge University Press:  04 August 2015

Chaoyang Li
Affiliation:
Center for Nanotechnology, Research Institute& School of System Engineering, Kochi University of Technology, 185 Miyanokuchi Tosayamada cho Kami, Kochi 782 – 8502, Japan.
Shengwen Hou
Affiliation:
Center for Nanotechnology, Research Institute& School of System Engineering, Kochi University of Technology, 185 Miyanokuchi Tosayamada cho Kami, Kochi 782 – 8502, Japan.
Get access

Abstract

ZnO nanorods were synthesized by recrystallization of ZnO thin films during multiannealing process. It was found that the obtained ZnO nanorods showed well-controlled grown direction. The periodical oxygen introducing between reducing annealing processes was effective to help on the oxidization reaction, result in the ZnO nanorods growth significantly. With controlling the annealing parameters, the morphologies of ZnO nanorods could be also controlled. The low-temperature (less than 420°C) initial reducing annealing process contributed to control the density of ZnO nanorods. The multi-annealing processes could reduce the ZnO thin film to produce ZnO nanorods efficiently. The structural, optical and electrical properties of the ZnO nanorods were investigated. Finally, the obtained ZnO nanorods used as photoelectrodes demonstrated in a dye-sensitized solar cell, the overall conversion efficiency of 3.65% was achieved.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ozgur, U., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S. J. and Morkoc, H., Journal of Applied Physics, 4, 041301 (2005).CrossRef
Liu, X., Wu, X., Cao, H. and Chang, R. P. H., Journal of Applied Physics, 95, 31413147 (2004).CrossRef
Lee, C. Y., Tseng, T. Y., Li, S. Y. and Lin, P., Tamkang Journal of Science and Engineering, 6, 127132 (2003).
Chae, K. W., Zhang, Q., Kim, J. S., Jeong, Y. H. and Cao, G., Beilstein Journal of Nanotechnology, 1, 128134 (2010).CrossRef
Park, J. H., Jang, S. J., Kim, S. S. and Lee, B. T., Applied Physics Letters, 89, 121108 (2006).10.1063/1.2356075CrossRef
Kashiwaba, Y., Sugawara, K., Haga, K., , Watanabe, H., Zhang, B. P. and Segawab, Y., Thin Solid films, 411, 8790 (2002).CrossRef
Look, D. C., Mater. Sci. Eng. B. Solid-State Mater. Adv. Technol. 80, 383387 (2001)10.1016/S0921-5107(00)00604-8CrossRef
Li, Q. H., Wan, Q., Liang, Y. X. and Wang, T. H., Appl. Phys. Lett. 84, 45564558 (2004)10.1063/1.1759071CrossRef
Choi, S., Kang, J. W., Hwang, D. K. and Park, S. J., IEEE Trans. on Electron Devices. 57, 2641 (2010)CrossRef
Martinson, B. F., Elam, J. W., Hupp, J. T. and Pellin, M. J., Nano Lett. 7, 21832187 (2007)10.1021/nl070160+CrossRef
Li, L., Zhai, T. Y., Bando, Y. and Golberg, D., Nano Ener. 1, 91106 (2012)CrossRef
Aoki, T., Hatanaka, Y. and Look, D. C., Appl. Phys. Lett. 76, 32573258 (2000)10.1063/1.126599CrossRef
Vayssieres, L., Adv. Mater. 15, 464466 (2003)CrossRef
Li, Z., Huang, X., Liu, J., Li, Y. and Li, G., Materials Letters, 62, 15031506 (2008)CrossRef
Yang, J., Gao, M., Yang, L., Zhang, Y., Lang, J., Wang, D., Wang, Y., Liu, H. and Fan, H., Applied Surface Science, 255, 26462650 (2008)CrossRef
Li, H., Zhang, Y. Z., Pan, X. J., Wang, T. and Xie, E. Q., J. Alloys Compd., 484, 575579 (2009)
Dal Corso, A., Posternak, M., Rest, R., and Baldereschi, A., Phys. Rev. B, 50, 10715 (1994).CrossRef
Peterson, R. B., Fields, C. L. and Gregg, B. A., Langmuir, 206, 5114 (2004)CrossRef
Yang, L., Zhao, Q., Willander, M. and Yang, J., J. Crystal Growth, 311, 10461050 (2009)CrossRef
Chik, H., Liang, J., Cloutier, S., Kouklin, N. and Xu, J., Appl. Phys. Lett. 84, 33763378 (2004)10.1063/1.1728298CrossRef
Ozgur, U., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S. J. and Morkoc, H., J. Appl. Phys. 98, 041301 (2005)10.1063/1.1992666CrossRef
Ma, T., Guo, M., Zhang, M. and Wang, X. D., Nanotechnol. 18, 035605–0.5612 (2007)CrossRef
Li, S. Y., Lin, P., Lee, C. Y. and Tseng, T. Y., J. Appl. Phys. 95, 37113716 (2004)CrossRef
Ohta, H., Kawamura, K., Orita, M., Hirano, M., Sarukura, N. and Hosono, H., Appl. Phys. Lett. 77, 475477 (2000)10.1063/1.127015CrossRef
Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R. and Yang, P., Science. 292, 18971899 (2001)CrossRef
Li, C. Y., Furuta, M., Matsuda, T., Hiramatsu, T., Furuta, H. and Hirao, T., Thin Solid Films. 517, 32653268 (2009)CrossRef
Hiramatsu, T., Furuta, M., Furuta, H., Matsuda, T., Li, C. Y. and Hirao, T., J. Cryst. Growth. 311, 282285 (2009)CrossRef
Li, C. Y., Kawaharamura, T., Matsuda, T., Furuta, H., Hiramatsu, T., Furuta, M., and Hirao, T., J. Appl. Phys. Express. 2, 091601 (2009)10.1143/APEX.2.091601CrossRef
Matsuda, T., Furuta, M., Hiramatsu, T., Furuta, H., Li, C. Y., and Hirao, T., Appl. Surf. Sci. 256, 63506353 (2010)10.1016/j.apsusc.2010.04.015CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Well-controllable Fabrication of Aligned ZnO Nanorods for Dye-sensitized Solar Cell Application
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Well-controllable Fabrication of Aligned ZnO Nanorods for Dye-sensitized Solar Cell Application
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Well-controllable Fabrication of Aligned ZnO Nanorods for Dye-sensitized Solar Cell Application
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *