Hostname: page-component-5d59c44645-ndqjc Total loading time: 0 Render date: 2024-02-24T17:24:38.244Z Has data issue: false hasContentIssue false

Well-controllable Fabrication of Aligned ZnO Nanorods for Dye-sensitized Solar Cell Application

Published online by Cambridge University Press:  04 August 2015

Chaoyang Li
Affiliation:
Center for Nanotechnology, Research Institute& School of System Engineering, Kochi University of Technology, 185 Miyanokuchi Tosayamada cho Kami, Kochi 782 – 8502, Japan.
Shengwen Hou
Affiliation:
Center for Nanotechnology, Research Institute& School of System Engineering, Kochi University of Technology, 185 Miyanokuchi Tosayamada cho Kami, Kochi 782 – 8502, Japan.
Get access

Abstract

ZnO nanorods were synthesized by recrystallization of ZnO thin films during multiannealing process. It was found that the obtained ZnO nanorods showed well-controlled grown direction. The periodical oxygen introducing between reducing annealing processes was effective to help on the oxidization reaction, result in the ZnO nanorods growth significantly. With controlling the annealing parameters, the morphologies of ZnO nanorods could be also controlled. The low-temperature (less than 420°C) initial reducing annealing process contributed to control the density of ZnO nanorods. The multi-annealing processes could reduce the ZnO thin film to produce ZnO nanorods efficiently. The structural, optical and electrical properties of the ZnO nanorods were investigated. Finally, the obtained ZnO nanorods used as photoelectrodes demonstrated in a dye-sensitized solar cell, the overall conversion efficiency of 3.65% was achieved.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ozgur, U., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S. J. and Morkoc, H., Journal of Applied Physics, 4, 041301 (2005).CrossRefGoogle Scholar
Liu, X., Wu, X., Cao, H. and Chang, R. P. H., Journal of Applied Physics, 95, 31413147 (2004).CrossRefGoogle Scholar
Lee, C. Y., Tseng, T. Y., Li, S. Y. and Lin, P., Tamkang Journal of Science and Engineering, 6, 127132 (2003).Google Scholar
Chae, K. W., Zhang, Q., Kim, J. S., Jeong, Y. H. and Cao, G., Beilstein Journal of Nanotechnology, 1, 128134 (2010).CrossRefGoogle Scholar
Park, J. H., Jang, S. J., Kim, S. S. and Lee, B. T., Applied Physics Letters, 89, 121108 (2006).10.1063/1.2356075CrossRefGoogle Scholar
Kashiwaba, Y., Sugawara, K., Haga, K., , Watanabe, H., Zhang, B. P. and Segawab, Y., Thin Solid films, 411, 8790 (2002).CrossRefGoogle Scholar
Look, D. C., Mater. Sci. Eng. B. Solid-State Mater. Adv. Technol. 80, 383387 (2001)10.1016/S0921-5107(00)00604-8CrossRefGoogle Scholar
Li, Q. H., Wan, Q., Liang, Y. X. and Wang, T. H., Appl. Phys. Lett. 84, 45564558 (2004)10.1063/1.1759071CrossRefGoogle Scholar
Choi, S., Kang, J. W., Hwang, D. K. and Park, S. J., IEEE Trans. on Electron Devices. 57, 2641 (2010)CrossRefGoogle Scholar
Martinson, B. F., Elam, J. W., Hupp, J. T. and Pellin, M. J., Nano Lett. 7, 21832187 (2007)10.1021/nl070160+CrossRefGoogle Scholar
Li, L., Zhai, T. Y., Bando, Y. and Golberg, D., Nano Ener. 1, 91106 (2012)CrossRefGoogle Scholar
Aoki, T., Hatanaka, Y. and Look, D. C., Appl. Phys. Lett. 76, 32573258 (2000)10.1063/1.126599CrossRefGoogle Scholar
Vayssieres, L., Adv. Mater. 15, 464466 (2003)CrossRefGoogle Scholar
Li, Z., Huang, X., Liu, J., Li, Y. and Li, G., Materials Letters, 62, 15031506 (2008)CrossRefGoogle Scholar
Yang, J., Gao, M., Yang, L., Zhang, Y., Lang, J., Wang, D., Wang, Y., Liu, H. and Fan, H., Applied Surface Science, 255, 26462650 (2008)CrossRefGoogle Scholar
Li, H., Zhang, Y. Z., Pan, X. J., Wang, T. and Xie, E. Q., J. Alloys Compd., 484, 575579 (2009)Google Scholar
Dal Corso, A., Posternak, M., Rest, R., and Baldereschi, A., Phys. Rev. B, 50, 10715 (1994).CrossRefGoogle Scholar
Peterson, R. B., Fields, C. L. and Gregg, B. A., Langmuir, 206, 5114 (2004)CrossRefGoogle Scholar
Yang, L., Zhao, Q., Willander, M. and Yang, J., J. Crystal Growth, 311, 10461050 (2009)CrossRefGoogle Scholar
Chik, H., Liang, J., Cloutier, S., Kouklin, N. and Xu, J., Appl. Phys. Lett. 84, 33763378 (2004)10.1063/1.1728298CrossRefGoogle Scholar
Ozgur, U., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S. J. and Morkoc, H., J. Appl. Phys. 98, 041301 (2005)10.1063/1.1992666CrossRefGoogle Scholar
Ma, T., Guo, M., Zhang, M. and Wang, X. D., Nanotechnol. 18, 035605–0.5612 (2007)CrossRefGoogle Scholar
Li, S. Y., Lin, P., Lee, C. Y. and Tseng, T. Y., J. Appl. Phys. 95, 37113716 (2004)CrossRefGoogle Scholar
Ohta, H., Kawamura, K., Orita, M., Hirano, M., Sarukura, N. and Hosono, H., Appl. Phys. Lett. 77, 475477 (2000)10.1063/1.127015CrossRefGoogle Scholar
Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R. and Yang, P., Science. 292, 18971899 (2001)CrossRefGoogle Scholar
Li, C. Y., Furuta, M., Matsuda, T., Hiramatsu, T., Furuta, H. and Hirao, T., Thin Solid Films. 517, 32653268 (2009)CrossRefGoogle Scholar
Hiramatsu, T., Furuta, M., Furuta, H., Matsuda, T., Li, C. Y. and Hirao, T., J. Cryst. Growth. 311, 282285 (2009)CrossRefGoogle Scholar
Li, C. Y., Kawaharamura, T., Matsuda, T., Furuta, H., Hiramatsu, T., Furuta, M., and Hirao, T., J. Appl. Phys. Express. 2, 091601 (2009)10.1143/APEX.2.091601CrossRefGoogle Scholar
Matsuda, T., Furuta, M., Hiramatsu, T., Furuta, H., Li, C. Y., and Hirao, T., Appl. Surf. Sci. 256, 63506353 (2010)10.1016/j.apsusc.2010.04.015CrossRefGoogle Scholar