Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T06:55:07.793Z Has data issue: false hasContentIssue false

Accurate models for the current-voltage characteristics of vertically compressed piezo-semiconductive quasi-1D NWs

Published online by Cambridge University Press:  18 June 2013

Rodolfo Araneo*
Affiliation:
DIAEE - Sapienza University of Rome, Via Eudossiana 18, 00184, Rome
Giampiero Lovat
Affiliation:
DIAEE - Sapienza University of Rome, Via Eudossiana 18, 00184, Rome
Christian Falconi
Affiliation:
Department of Electronic Engineering, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133, Rome CNR IDASC, Via Fosso del Cavaliere, 100, 00133 Rome, Italy
Andrea Notargiacomo
Affiliation:
Institute of Photonics and Nanotechnology – CNR, Via Cineto Romano 42, 00156, Rome , Italy
Antonio Rinaldi
Affiliation:
University of L'Aquila, International Research Center for Mathematics & Mechanics of Complex System (MEMOCS), Via S. Pasquale, 04012, Cisterna di Latina (LT), Italy ENEA ,C.R. Casaccia, Via Anguillarese 301, Santa Maria di Galeria, 00123, Rome, Italy
*
*Email: rodolfo.araneo@uniroma1.it
Get access

Abstract

We investigate the electrical transport in quasi-1D piezo-semiconductive NWs under purely vertical compressive or tensile strains. For simplicity, we exclusively consider the additional band bending originated by the piezoelectric charges assumed to be distributed, with a constant volumic density, within a maximum distance δpiezo 003F from the metal-to-NW junction. Our calculations demonstrate that the carrier concentration, the energy conduction band profile and the I-V characteristics significantly depend on δpiezo 003F . We therefore propose that I-V measurements can allow to obtain information on δpiezo 003F in strained piezo-semiconductors.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Araneo, R., Lovat, G., Burghignoli, P., Falconi, C., Advanced Materials, 24, 47194724 (2012).CrossRefGoogle Scholar
Zhang, Y., Liu, Y., Wang, Z. L., Advanced Materials, 23, 30043013 (2011).CrossRefGoogle Scholar
Wu, W., Wei, Y., Wang, Z. L., Advanced Materials, 22, 47114715 (2010).CrossRefGoogle Scholar
Han, W., Zhou, Y., Zhang, Y., Chen, C. Y., Lin, L., Wang, X., Wang, S., Wang, Z. L., ACS Nano, 6, 37603766 (2012)CrossRefGoogle Scholar
Zhou, J., Fei, P., Gu, Y., Mai, W., Gao, Y., Yang, R., Bao, G., Wang, Z. L., Nano Letters, 8, 39733977 (2008).CrossRefGoogle Scholar
Romano, G., Mantini, G., Di Carlo, A., D’Amico, A., Falconi, C., Wang, Z. L., Nanotechnology, 22, 465401 (2011).CrossRefGoogle Scholar
Espinosa, H. D., Bernal, R. A., M.-Jolandan, M., Adv. Mater., 24, 46564675 (2012)CrossRefGoogle Scholar
Reeber, R.R. (1970) Journal of Applied Physics, 41, 5063 CrossRefGoogle Scholar
Vasileska, D., Goodnick, S. M., Klimeck, G., Computational Electronics, (CRC Press, 2010)Google Scholar