Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-19T06:31:00.583Z Has data issue: false hasContentIssue false

Activation and Interdiffusion Characteristics in Implanted GaAs-AlGaAs Heterostructures on Si

Published online by Cambridge University Press:  21 February 2011

S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
K. T. Short
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
K. S. Jones
Affiliation:
University of Florida, Gainesville, FL 32611
S. M. Vernon
Affiliation:
Spire Corporation, Bedford, MA 01730
Get access

Abstract

The activation kinetics and diffusion behaviour of implanted Be and Si in two different types of MOCVD-grown GaAs-AlGaAs heterostructures on Si substrates were examined by electrochemical C-V profiling, secondary ion mass spectrometry and sheet resistivity measurements. The implanted Be displays a thermal activation energy of 0.70 eV and Si a thermal activation energy of 0.53 eV in heteroepitaxial material, similar to the comparable cases in homoepitaxial GaAs. In addition, there is no evidence for enhanced diffusivity of either species, at least for implants located away from the heterointerface. The remnant lattice disorder in the heterostructures caused by implantation and annealing is negligible compared to the as-grown disorder, as revealed by transmission electron microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Tsaur, B. Y. and Metze, G. M., Appl. Phys. Lett. 45, 535 (1984).Google Scholar
[2] Vernon, S. M., Haven, V. E., Tobin, S. P. and Wolfson, R. G., I. Cryst. Growth 77, 530 (1986).Google Scholar
[3] Shastry, S. K. and Zemon, S., Appl. Phys. Lett. 49, 467 (1986).Google Scholar
[4] Kroemer, H. B., Proc. Mat. Res. Soc. 67, 3 (1986).Google Scholar
[5] Chand, N., People, R., Wecht, K. and Cho, A. Y., Appl. Phys. Lett. 49, 815 (1986).CrossRefGoogle Scholar
[6] Ueda, T., Nishi, S., Kawarada, Y., Akiyama, M. and Kaminishi, K., Jap. I. Appl. Phys. 25, L789 (1986).Google Scholar
[7] Fischer, R. J., Kopp, W. F., Gedymin, J. S. and Morkoc, H., IEEE Trans. Electron. Dev. Lett. 33, 1407 (1986).Google Scholar
[8] Asbeck, P. M., Miller, D. L., Anderson, R. I. and Eisen, F. H., IEEE Electron. Dev. Lett. 5, 310 (1984).Google Scholar
[9] Adachi, S. and Ishibashi, T., IEEE Electron Dev. Lett. 7, 32 (1986).Google Scholar
[10] Pearton, S. J., Vernon, S. M., Gibson, I. M., Short, K. T., Abernathy, C. R., Caruso, R., Jacobson, D. C., White, A. E. and Haven, V. E., J. Appl. Phys. 63 775 (1988).Google Scholar
[11] Pearton, S. J., Brown, I. M. and Short, K. T., Mat. Res. Soc. Symp. Proc. 92, 367 (1987).CrossRefGoogle Scholar