Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T11:31:11.362Z Has data issue: false hasContentIssue false

AFM Studies of Fracture Surfaces of Composition B Energetic Materials

Published online by Cambridge University Press:  15 March 2011

Y. D. Lanzerotti
Affiliation:
U. S. Army ARDEC, Picatinny Arsenal, NJ 07806-5000
J. Sharma
Affiliation:
Naval Surface Warfare Center, Carderock Division, West Bethesda MD 20817-5700
Get access

Abstract

The characteristics of TNT (trinitrotoluene) crystals in Composition B have been studied using atomic force microscopy (AFM). The size of TNT crystals has been examined by analyzing the surface structure that is exhibited after mechanical failure of the Composition B. The mechanical failure occurs when the material is subjected to high acceleration (high g)inan ultracentrifuge and. the shear or tensile strength is exceeded. AFM examination of the topography of the Composition B fracture surface reveals fracture across columnar grains of the TNT. The width of the columnar TNT grains ranges in size from ~ 1 μm to~2 μm. Their height ranges in size from ~ 50 nm to ~ 300 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lanzerotti, Y. D. and Sharma, J., App. Phys. Lett., 39, 455 (1981).Google Scholar
2. Lanzerotti, Y. D. and Sharma, J., Mechanical behavior of energetic materials during high acceleration in an ultracentrifuge, Grain-Size and Mechanical Properties - Fundamentals and Applications, eds. Armstrong, R. W., Baker, T. N., Grant, N.J., Sihizaki, K., Otooni, M.A. (Materials Research Society, 1995), 362, pp. 131134.Google Scholar
3. Lanzerotti, Y. D. and Sharma, J., Mechanical behavior of energetic materials during high acceleration in an ultracentrifuge, Shock Compression of Condensed Matter - 1997, eds. Schmidt, C., Dandekar, C. P., Forbes, J. W., (American Institute of Physics, 1998), pp. 595597.Google Scholar
4. Lanzerotti, Y. D. and Sharma, J., Mechanical behavior of energetic materials at high acceleration, Proc. Centrifugal Materials Processing IV, in press.Google Scholar
5. Lanzerotti, Y. D., Pinto, J. and Wolfe, A., Broad bandwidth study of the topography of the fracture surfaces of explosives, Proc. Ninth Symposium (International) on Detonation (Office of the Chief of Naval Research, 1989), pp. 918924.Google Scholar
6. Lanzerotti, Y. D., Pinto, J., Wolfe, A., and Thomson, D. J., Fracture surface topography of TNT, Composition B and Octol, Proc. Tenth International Detonation Symposium, (Office of Naval Research, 1993), pp. 190198.Google Scholar
7. Lanzerotti, Y. D., Fracture surface topography of TNT using atomic force microscopy, Atomic Force Microscopy/Scanning Tunneling Microscopy, eds. Cohen, S. H., Gray, M.T., and Lightbody, M. L., (Plenum Press, 1995), pp. 127136.Google Scholar
8. Lanzerotti, Y. D., Meisel, L. V., Johnson, M. A., Wolfe, A., and Thomson, D. J., Fracture surface topography of energetic materials using atomic force microscopy, Atomic Resolution Microscopy of Surfaces and Interfaces, ed. Smith, D., (Materials Research Society, 1997), 466, pp. 179184.Google Scholar
9. Meisel, L. V., Scanlon, R. D., Johnson, M. A. and Lanzerotti, Y. D., Self-affine analysis on curved reference surfaces: self-affine fractal characterization of a TNT surface, Shock Compression of Condensed Matter - 1999, eds. Furnish, M.D., Chhabildas, L. C., and Hixon, R. S., (American Institute of Physics, 2000), pp. 727730.Google Scholar
10. Meisel, L. V., Scanlon, R. D., Johnson, M. A., and Lanzerotti, Y. D., Self-affine fractal characterization of a TNT fracture surface, Multiscale Phenomena in Materials - Experiments and Modeling, eds Robertson, I. M., Lassila, D. H., Devincre, B. and Phillips, R., (Materials Research Society, 2000), 578, pp. 363367.Google Scholar
11. Smith, D. L. and Thorpe, R. W., J. Mat. Sci., 8, 757 (1973).Google Scholar
12. Dobratz, B. M. and Crawford, P. C., LLNL Explosives Handbook, Properties of Chemical Explosives and Explosive Simulants, UCRL-52997 Change 2, 31 January 1985, Lawrence Livermore National Laboratory, p. 19143.Google Scholar
13. Dobratz, B. M. and Crawford, P. C., LLNL Explosives Handbook, Properties of Chemical Explosives and Explosive Simulants, UCRL-52997 Change 2, 31 January 1985, Lawrence Livermore National Laboratory, p. 19131.Google Scholar
14. Fedoroff, Basil T. and Sheffield, Oliver E., Encyclopedia of Explosives and Related Items, PATR 2700, Volume 3, Picatinny Arsenal, Dover, New Jersey 1966, p. 615.Google Scholar
15. Chick, M. C., Connick, W., and Thorpe, B. W., J. Crystal Growth, 7, 317 (1970).Google Scholar