Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-12T06:22:26.165Z Has data issue: false hasContentIssue false

Air-Bridge Electron-Beam Lithography for Coplanar Millimeter Wave Circuits

Published online by Cambridge University Press:  25 February 2011

William H. Haydl
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, NY 14853. On leave from the Institute for Applied Solid State Physics of the Fraunhofer Ges. (IAF-FHG), D-7800 Freiburg, Germany
R. J. Bojko
Affiliation:
School of Electrical Engineering, and National Nanofabrication Facility (NNF), Cornell University, Ithaca, NY 14853
L. F. Eastman
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, NY 14853
Get access

Abstract

In the development of air bridges for low capacitance crossovers, resists of 3–6μm thickness a e needed, which calls for special alignment techniques. A technique has been developed for an air bridge tec nology, which is realized entirely by electron beam lithography. Such an all-electron-beam technique for sub-micron devices and ultrahigh frequency circuits, results in a fast turn-around-time in the development of integrated circuits.

Gold plated air bridges with 20 to 120 pm span, 5–60 μm width, 2.6 pm height, and 2–4 μm thickness, were realized on GaAs and InP.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Thomas, L., Hing, A., Hughes, E., Beckerson, J., Wilson, J., Electronics Letters, 22, 11831185, (1986).Google Scholar
2. Chen, T., Chang, K. W., Bui, S. B., Wang, H., Dow, G. S., Lui, L. C. T., Lin, T. S., and Titus, W. S., IEEE Trans. Microwave Theory-Tech. 39, 19801986, (1991).CrossRefGoogle Scholar
3. Tajima, Y., Tsukii, T., Tong, E., Mozzi, R., Hanes, L. and Wrona, B., IEEE MTTS Digest, 476478, (1982).Google Scholar
4. Chye, P. W., Huang, C., IEEE Electron Dev. Letters, EDL-3, 401403, (1982).Google Scholar
5. Bayraktaroglu, B., Khatibzadeh, M. A. and Hudgens, R. D., IEEE Microwave and MiIlimeter-Wave Monolithic Circuits Symposium, 4346, (1990).Google Scholar
6. Waterman, R. C. Jr, Fabian, W., Pucel, R. A., Tajima, Y. and Vorhaus, J. L., IEEE Trans Electron Dev., ED-28, 212216, (1981).CrossRefGoogle Scholar
7. vorhaus, J. L., Pucel, R. A. and Tajima, Y., IEEE Trans. Electron Dev., ED-29, 10781088, (1982).Google Scholar
8. Lai, R., Bhattacharya, P. K. and Pavlidis, D., IEEE 3rd Int. Conf. on Indium Phosphide and Related Materials 2, 407410, (1991).Google Scholar
9. Enoki, T., Yamasaki, K., Osafune, K., Ohwada, K., Electronics Letters, 22, 6869, (1986).Google Scholar
10. Majidi-Ahy, R., Riaziat, M., Nishimoto, C., Glenn, M., Silvermann, S., weng, S., Pao, Y. C., Zdasiuk, G., Bandy, S. and Tan, Z., IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium Digest, 3134, (1990).Google Scholar
11. inoue, T., Tornita, K., Mitaura, Y., Terada, T. and Uchitam, N., IEEE GaAs IC Symposium Digest, 253256, (1990).Google Scholar